scholarly journals Overcoming Depression with 5-HT2A Receptor Ligands

2021 ◽  
Vol 23 (1) ◽  
pp. 10
Author(s):  
Agata Zięba ◽  
Piotr Stępnicki ◽  
Dariusz Matosiuk ◽  
Agnieszka A. Kaczor

Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2019 ◽  
Vol 14 (6) ◽  
pp. 470-479 ◽  
Author(s):  
Nazia Parveen ◽  
Amen Shamim ◽  
Seunghee Cho ◽  
Kyeong Kyu Kim

Background: Although most nucleotides in the genome form canonical double-stranded B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical DNAs (ncDNAs) are not only associated with many genetic events such as replication, transcription, and recombination, but are also related to the genetic instability that results in the predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions, various computational methods have been implemented to predict sequence motifs that generate ncDNA. Objective: Here, we review strategies for the identification of ncDNA motifs across the whole genome, which is necessary for further understanding and investigation of the structure and function of ncDNAs. Conclusion: There is a great demand for computational prediction of non-canonical DNAs that play key functional roles in gene expression and genome biology. In this study, we review the currently available computational methods for predicting the non-canonical DNAs in the genome. Current studies not only provide an insight into the computational methods for predicting the secondary structures of DNA but also increase our understanding of the roles of non-canonical DNA in the genome.


1999 ◽  
Vol 79 (1) ◽  
pp. S23-S45 ◽  
Author(s):  
DAVID N. SHEPPARD ◽  
MICHAEL J. WELSH

Sheppard, David N., and Michael J. Welsh. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79 , Suppl.: S23–S45, 1999. — The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl− channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 70 ◽  
Author(s):  
Espen Mikal Robertsen ◽  
Hubert Denise ◽  
Alex Mitchell ◽  
Robert D. Finn ◽  
Lars Ailo Bongo ◽  
...  

Metagenomics, the study of genetic material recovered directly from environmental samples, has the potential to provide insight into the structure and function of heterogeneous microbial communities.  There has been an increased use of metagenomics to discover and understand the diverse biosynthetic capacities of marine microbes, thereby allowing them to be exploited for industrial, food, and health care products. This ELIXIR pilot action was motivated by the need to establish dedicated data resources and harmonized metagenomics pipelines for the marine domain, in order to enhance the exploration and exploitation of marine genetic resources. In this paper, we summarize some of the results from the ELIXIR pilot action “Marine metagenomics – towards user centric services”.


2019 ◽  
Vol 20 (6) ◽  
pp. 1353 ◽  
Author(s):  
Quan Wang ◽  
Sha Yang ◽  
Shubo Wan ◽  
Xinguo Li

As a secondary messenger, calcium participates in various physiological and biochemical reactions in plants. Photosynthesis is the most extensive biosynthesis process on Earth. To date, researchers have found that some chloroplast proteins have Ca2+-binding sites, and the structure and function of some of these proteins have been discussed in detail. Although the roles of Ca2+ signal transduction related to photosynthesis have been discussed, the relationship between calcium and photosynthesis is seldom systematically summarized. In this review, we provide an overview of current knowledge of calcium’s role in photosynthesis.


2020 ◽  
Vol 157 ◽  
pp. 104557 ◽  
Author(s):  
Fengling Ning ◽  
Hong Xin ◽  
Junqiu Liu ◽  
Chao Lv ◽  
Xin Xu ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1467
Author(s):  
Anastasia Mozokhina ◽  
Rostislav Savinkov

This paper presents current knowledge about the structure and function of the lymphatic system. Mathematical models of lymph flow in the single lymphangion, the series of lymphangions, the lymph nodes, and the whole lymphatic system are considered. The main results and further perspectives are discussed.


Sign in / Sign up

Export Citation Format

Share Document