scholarly journals Integrating Whole-Genome Sequencing in Clinical Genetics: A Novel Disruptive Structural Rearrangement Identified in the Dystrophin Gene (DMD)

2021 ◽  
Vol 23 (1) ◽  
pp. 59
Author(s):  
Ana Gonçalves ◽  
Ana Fortuna ◽  
Yavuz Ariyurek ◽  
Márcia E. Oliveira ◽  
Goreti Nadais ◽  
...  

While in most patients the identification of genetic alterations causing dystrophinopathies is a relatively straightforward task, a significant number require genomic and transcriptomic approaches that go beyond a routine diagnostic set-up. In this work, we present a Becker Muscular Dystrophy patient with elevated creatinine kinase levels, progressive muscle weakness, mild intellectual disability and a muscle biopsy showing dystrophic features and irregular dystrophin labelling. Routine molecular techniques (Southern-blot analysis, multiplex PCR, MLPA and genomic DNA sequencing) failed to detect a defect in the DMD gene. Muscle DMD transcript analysis (RT-PCR and cDNA-MLPA) showed the absence of exons 75 to 79, seen to be present at the genomic level. These results prompted the application of low-coverage linked-read whole-genome sequencing (WGS), revealing a possible rearrangement involving DMD intron 74 and a region located upstream of the PRDX4 gene. Breakpoint PCR and Sanger sequencing confirmed the presence of a ~8 Mb genomic inversion. Aberrant DMD transcripts were subsequently identified, some of which contained segments from the region upstream of PRDX4. Besides expanding the mutational spectrum of the disorder, this study reinforces the importance of transcript analysis in the diagnosis of dystrophinopathies and shows how WGS has a legitimate role in clinical laboratory genetics.

Author(s):  
Michael Abbott ◽  
Lynda McKenzie ◽  
Blanca Viridiana Guizar Moran ◽  
Sebastian Heidenreich ◽  
Rodolfo Hernández ◽  
...  

AbstractNovel developments in genomic medicine may reduce the length of the diagnostic odyssey for patients with rare diseases. Health providers must thus decide whether to offer genome sequencing for the diagnosis of rare conditions in a routine clinical setting. We estimated the costs of singleton standard genetic testing and trio-based whole genome sequencing (WGS), in the context of the Scottish Genomes Partnership (SGP) study. We also explored what users value about genomic sequencing. Insights from the costing and value assessments will inform a subsequent economic evaluation of genomic medicine in Scotland. An average cost of £1,841 per singleton was estimated for the standard genetic testing pathway, with significant variability between phenotypes. WGS cost £6625 per family trio, but this estimate reflects the use of WGS during the SGP project and large cost savings may be realised if sequencing was scaled up. Patients and families valued (i) the chance of receiving a diagnosis (and the peace of mind and closure that brings); (ii) the information provided by WGS (including implications for family planning and secondary findings); and (iii) contributions to future research. Our costings will be updated to address limitations of the current study for incorporation in budget impact modelling and cost-effectiveness analysis (cost per diagnostic yield). Our insights into the benefits of WGS will guide the development of a discrete choice experiment valuation study. This will inform a user-perspective cost–benefit analysis of genome-wide sequencing, accounting for the broader non-health outcomes. Taken together, our research will inform the long-term strategic development of NHS Scotland clinical genetics testing services, and will be of benefit to others seeking to undertake similar evaluations in different contexts.


Author(s):  
Tina Hambuch ◽  
Brad Sickler ◽  
Arnold Liao ◽  
Suneer Jain ◽  
Philip D. Cotter

2020 ◽  
Vol 117 (6) ◽  
pp. 3053-3062 ◽  
Author(s):  
Ying-Chen Claire Hou ◽  
Hung-Chun Yu ◽  
Rick Martin ◽  
Elizabeth T. Cirulli ◽  
Natalie M. Schenker-Ahmed ◽  
...  

Genome sequencing has established clinical utility for rare disease diagnosis. While increasing numbers of individuals have undergone elective genome sequencing, a comprehensive study surveying genome-wide disease-associated genes in adults with deep phenotyping has not been reported. Here we report the results of a 3-y precision medicine study with a goal to integrate whole-genome sequencing with deep phenotyping. A cohort of 1,190 adult participants (402 female [33.8%]; mean age, 54 y [range 20 to 89+]; 70.6% European) had whole-genome sequencing, and were deeply phenotyped using metabolomics, advanced imaging, and clinical laboratory tests in addition to family/medical history. Of 1,190 adults, 206 (17.3%) had at least 1 genetic variant with pathogenic (P) or likely pathogenic (LP) assessment that suggests a predisposition of genetic risk. A multidisciplinary clinical team reviewed all reportable findings for the assessment of genotype and phenotype associations, and 137 (11.5%) had genotype and phenotype associations. A high percentage of genotype and phenotype associations (>75%) was observed for dyslipidemia (n = 24), cardiomyopathy, arrhythmia, and other cardiac diseases (n = 42), and diabetes and endocrine diseases (n = 17). A lack of genotype and phenotype associations, a potential burden for patient care, was observed in 69 (5.8%) individuals with P/LP variants. Genomics and metabolomics associations identified 61 (5.1%) heterozygotes with phenotype manifestations affecting serum metabolite levels in amino acid, lipid and cofactor, and vitamin pathways. Our descriptive analysis provides results on the integration of whole-genome sequencing and deep phenotyping for clinical assessments in adults.


Oncotarget ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 17070-17080 ◽  
Author(s):  
Mei Tang ◽  
Heng Wei ◽  
Lu Han ◽  
Jiaojiao Deng ◽  
Yuelong Wang ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A68-A68
Author(s):  
Kerstin Neininger ◽  
Patrick May ◽  
Barbara Altieri ◽  
Juliane L Lippert ◽  
Kirsten Roomp ◽  
...  

Abstract Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Our aim was to identify novel genetic alterations in adrenocortical adenomas (ACA) without somatic mutations in known driver genes. Whole-genome sequencing was performed on 26 ACA/blood-derived DNA pairs without driver mutations in PRKACA, GNAS and CTNNB1 genes at previous WES (ENSAT study JCEM 2016). These included 12 cortisol-producing adenomas with Cushing syndrome (CS-CPAs), 7 with mild autonomous cortisol secretion (MACS-CPAs), and 7 endocrine-inactive ACAs (EIAs). Seven adrenocortical carcinomas (ACC) were added to the cohort. We developed a bioinformatics pipeline for a comprehensive genome analysis and to reveal differences in variant distribution. Strelka, VarScan2 and ANNOVAR software and an in-house confidence score were used for variant calling and functional annotation. Combined Annotation-Dependent-Depletion (CADD) values were used to prioritize pathogenic variants. Additional focus relied on variants in pathogenically known pathways (Wnt/β-catenin, cAMP/PKA pathway). NovoBreak algorithm was applied to discover structural variations. Two hypermutated CS-CPA samples were excluded from further analysis. Using different filters, we detected variants in driver genes not observed at WES (one p.S45P in CTNNB1 and one p.R206L in PRKACA in two different CS-CPAs). In total, we report 179,830 variations (179,598 SNVs; 232 indels) throughout all samples, being more abundant in ACC (88,954) compared to ACA (CS-CPAs: 31,821; MACS-CPAs: 35,008; EIAs: 29,963). Most alterations were in intergenic (>50%), followed by intronic and ncRNA intronic regions. A total of 32 predicted pathogenic variants were found in both coding (CADD values ≥ 15) and non-coding (CADD values ≥ 5) regions. We found 3,301 possibly damaging and recurrent variants (intergenic mutations removed) (CS-CPAs: 1,463; MACS-CPAs: 1,549; EIAs: 1,268; ACC: 1,660), mostly accumulated in intronic regions. Some of these were detected in members of the Wnt/β-catenin (CS-CPAs: 6; MACS-CPAs: 2; EIA: 1) and cAMP/PKA (CS-CPAs: 6; MACS-CPAs: 7; EIA: 4) pathways (e.g. ADCY1, ADCY2, GNA13, PDE11A). We also found a slightly higher number of structural variations in EIA (3,620) and ACC (3,486) compared to CS-CPAs (977) and MACS-CPAs (2,119). In conclusion, still unrevealed genetic alterations, especially in intronic regions, may accompany early adrenal tumorigenesis and/or autonomous cortisol secretion.


2021 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Bruna Mascaro Cordeiro de Azevedo ◽  
Danielle Ribeiro Lucon ◽  
Maria Soares Nobrega ◽  
Rodrigo de Souza Reis ◽  
...  

Rare diseases affect 3.2 to 13.2 million individuals in Brazil. The Brazilian Rare Genomes Project is envisioned to further the implementation of genomic medicine into the Brazilian public healthcare system. Here we report the results of the validation of a whole genome sequencing (WGS) procedure for implementation in a clinical laboratory. In addition, we report data quality for the first 1,200 real world patients sequenced. For the validation, we sequenced a well characterized group of 76 samples, including seven gold standard genomes, using a PCR-free WGS protocol on Illumina Novaseq 6000 equipment. We compared the observed variant calls with their expected calls, observing good concordance for single nucleotide variants (SNVs; mean F-measure = 99.82%) and indels (mean F-measure = 99.57%). Copy number variants and structural variants events detection performances were as expected (F-measures 96.6% and 90.3%, respectively). Our protocol presented excellent intra- and inter-assay reproducibility, with coefficients of variation ranging between 0.03% and 0.20% and 0.02% and 0.09%, respectively. Limitations of the procedure include the inability to confidently detect variants such as uniparental disomy, balanced translocations, repeat expansion variants and low-level mosaicism. In summary, the observed performance of the test was in accordance with that seen in the best centers worldwide. The Rare Genomes Project is an important initiative to improve Brazil's general population access to the innovative WGS technology which has the potential to reduce the time until diagnosis of rare diseases, bringing pivotal improvements for the quality of life of the affected individuals.


2017 ◽  
Vol 55 (8) ◽  
pp. 2502-2520 ◽  
Author(s):  
Varvara K. Kozyreva ◽  
Chau-Linda Truong ◽  
Alexander L. Greninger ◽  
John Crandall ◽  
Rituparna Mukhopadhyay ◽  
...  

ABSTRACT Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5512-5512
Author(s):  
Yasuito Nannya ◽  
Yoshida Kenichi ◽  
Keisuke Kataoka ◽  
Yasunobu Nagata ◽  
Tetsuichi Yoshizato ◽  
...  

Abstract Background Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid malignancies characterized by refractory cytopenias with marrow dysplasia, which frequently progress to acute myeloid leukemia (AML). Although poorly understood in the previous era, the molecular events that underlie the pathogenesis of MDS have been intensively studied using advanced genomics in the past decade and are now fully catalogued into an array of well-defined functional pathways. However, mostly obtained through exome/targeted-capture sequencing, our knowledge about these molecular events is largely confined to those of single nucleotide variations (SNVs) and short indels, as well as arm-level copy number lesions, mostly within the coding sequences. Alterations in the non-coding regions, particularly a diversity of structural variations, in MDS genomes remain to be investigated in most part, even though the relevance of such lesions has recently been unequivocally demonstrated for other cancer types through large-scale whole genome sequencing (WGS) studies. Unfortunately, however, only a small number of MDS samples have been fully analyzes and inspected for genetic alterations using WGS. Patients and Methods In the present study, we performed an integrated, unbiased molecular study of 60 MDS cases, using whole genome sequencing (WGS) in combination with exome and transcriptome sequencing as well as methylome analysis. Paired tumor/germline DNA were obtained from patients' bone marrow and buccal smear samples. Sequencing data were analyzed using novel in-house pipelines, which were tuned to optimize detection of complex structural variations (SVs) and abnormalities in non-coding sequences. For some patients, multiple longitudinal materials were obtained along with their clinical course. Results WGS identified SNVs across the entire genome with a mean of 5.7/Mb/genome with a clear predominance of age-related C to T transitions, followed by other signatures. The spectrum of major targets of somatic mutations successfully recapitulated the previously reported one in MDS, including those involving splicing factors (SRSF2, SF3B1, U2AF1, and ZRSR2), epigenetic regulators (DNMT3A, ASXL1, TET2, BCOR, and EZH2), transcription factors (RUNX1, ETV6, and CUX1), signal transducing molecules (NRAS, KRAS, FLT3, PTPN11, CBL), and other critical molecules (TP53, NPM1, and STAG2). Moreover, other somatic variants within the coding regions were also identified that had already been reported in other human cancers but not in MDS, such as NCOR2X, MUC6, and TIAM2. The analysis of SVs unexpectedly revealed the complexity of MDS genomes. Most of the MDS genomes analyzed had a heavy burden of SVs including tandem duplications, deletions, translocations, and inversions, with a mean of 7.2/genome, which was far more than expected from conventional cytogenetics and array-based karyotyping. Complex rearrangements were common, frequently converging into particular chromosomes, suggesting multiple genetic events at a single genetic insult. Known targets of SNVs and indels were often affected by SVs, which largely escaped from conventional exome and targeted-capture sequencing, including RUNX1, TET2, FHITand other genes, suggesting that conventional platforms may substantially underestimate the frequency of alterations for some genes. Concomitant transcriptome analysis allowed to correlated abnormal splicing with somatic intronic events otherwise undetectable. Furthermore, comprehensive analysis of genomic aberrations in longitudinal samples enabled us to delineate the clonal architecture of the cellular population in MDS and their dynamics during the AML progression or clonal changes caused by AZA treatment. Conclusions Integrated molecular analysis using WGS and other platforms revealed the complexity of MDS genomes previously unexpected and reveal novel genetic alterations. Our results should help to extend our knowledge about the genomic landscape of MDS and provide novel insights into the molecular pathogenesis and clonal dynamics of MDS. Disclosures Kataoka: Kyowa Hakko Kirin: Honoraria; Boehringer Ingelheim: Honoraria; Yakult: Honoraria. Naoe:Pfizer Inc.: Research Funding; CMIC Co., Ltd.: Research Funding; Kyowa-Hakko Kirin Co.,Ltd.: Honoraria, Patents & Royalties, Research Funding; Otsuka Pharmaceutical Co.,Ltd.: Honoraria, Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Honoraria, Research Funding; Amgen Astellas BioPharma K.K.: Honoraria; TOYAMA CHEMICAL CO.,LTD.: Research Funding; Chugai Pharmaceutical Co.,LTD.: Honoraria, Patents & Royalties; Celgene K.K.: Honoraria, Research Funding; Sumitomo Dainippon Pharma Co.,Ltd.: Honoraria, Research Funding; Fujifilm Corporation: Honoraria, Patents & Royalties, Research Funding; Bristol-Myers Squibb: Honoraria; Astellas Pharma Inc.: Research Funding. Kiyoi:Celgene Corporation: Consultancy; MSD K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Kyowa-Hakko Kirin Co.LTD.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; JCR Pharmaceutlcals Co.,Ltd.: Research Funding; Alexion Pharmaceuticals: Research Funding; Yakult Honsha Co.,Ltd.: Research Funding; Eisai Co., Ltd.: Research Funding; Chugai Pharmaceutical Co. LTD.: Research Funding; Toyama Chemikal Co.,Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Phizer Japan Inc.: Research Funding; Novartis Pharma K.K.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Zenyaku Kogyo Co.LTD.: Research Funding; AlexionpharmaLLC.: Research Funding. Ogawa:Kan research institute: Consultancy, Research Funding; Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document