scholarly journals Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa

2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Tiantian Wang ◽  
Jingyu Yao ◽  
Lin Jia ◽  
Patrice E. Fort ◽  
David N. Zacks

Inherited retinal degenerations (IRD) are a leading cause of visual impairment and can result from mutations in any one of a multitude of genes. Mutations in the light-sensing protein rhodopsin (RHO) is a leading cause of IRD with the most common of those being a missense mutation that results in substitution of proline-23 with histidine. This variant, also known as P23H-RHO, results in rhodopsin misfolding, initiation of endoplasmic reticulum stress, the unfolded protein response, and activation of cell death pathways. In this study, we investigate the effect of α-crystallins on photoreceptor survival in a mouse model of IRD secondary to P23H-RHO. We find that knockout of either αA- or αB-crystallin results in increased intraretinal inflammation, activation of apoptosis and necroptosis, and photoreceptor death. Our data suggest an important role for the ⍺-crystallins in regulating photoreceptor survival in the P23H-RHO mouse model of IRD.

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e45690 ◽  
Author(s):  
Danilo Maddalo ◽  
Antje Neeb ◽  
Katja Jehle ◽  
Katja Schmitz ◽  
Claudia Muhle-Goll ◽  
...  

Cell Calcium ◽  
2018 ◽  
Vol 76 ◽  
pp. 48-61 ◽  
Author(s):  
Paula Szalai ◽  
Jan B. Parys ◽  
Geert Bultynck ◽  
Søren Brøgger Christensen ◽  
Poul Nissen ◽  
...  

2016 ◽  
Vol 2 (3) ◽  
pp. 281-301.e9 ◽  
Author(s):  
Thomas Lahlali ◽  
Marie-Laure Plissonnier ◽  
Cristina Romero-López ◽  
Maud Michelet ◽  
Benjamin Ducarouge ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2505-2505 ◽  
Author(s):  
Faith E. Davies ◽  
Hannah E. Moore ◽  
Emma L. Davenport ◽  
Alan S. Dunlop ◽  
Srikanth Muralikrishnan ◽  
...  

Abstract Myeloma cells are highly dependent on the unfolded protein response to assemble folded immunoglobulins correctly. Therefore targeting protein handling within a myeloma cell by inhibiting the aminopeptidase enzyme system that catalyses the hydrolysis of amino acids from the N terminus of proteins may be a novel therapeutic approach. The effect of the aminopeptidase inhibitor CHR-2797 on myeloma cell proliferation and survival, gene expression, protein turnover, cell migration and myeloma-bone marrow stromal cell interactions was determined on a panel of myeloma cell lines and patient cells. CHR-2797 is able to inhibit the proliferation of myeloma cell lines and primary patient cells, whereas its derivative CHR-79888, an acid metabolite with low cell membrane permeability fails to induce myeloma cell death. This occurs though apoptosis as demonstrated by trypan blue exclusion and annexin V/PI staining, and is proceeded by G1 growth arrest. Western blot analysis demonstrates apoptosis occurs via a non-caspase dependant mechanism. Importantly CHR-2797 is able to induce apoptosis in cells known to be resistant to conventional chemotherapeutic agents. Analysis of the pathways involved using Affymetrix gene expression arrays demonstrates CHR-2797 causes an upregulation of many genes involved in the proteasome/ubiquitin pathway, as well as amino acid deprivation response genes and some aminopeptidases. A further mechanism contributing to cell death is activation of the unfolded protein response with activation of all three UPR pathways demonstrated by splicing of XBP1 to its active from XBP1s, an increase in CHOP with activation of the PERK pathway and cleavage of ATF6. Cytoplasmic inclusions are also present on light microscopy suggestive of the build up of misfolded proteins within the cytoplasm. CHR-2797 causes minimal inhibition of the proliferation of bone marrow stroma, but is able to overcome the protective effects of the micro-environment on myeloma cells, as the drug is still able to inhibit the proliferation of myeloma cells when they are bound to bone marrow stromal cells. Aminopeptidase inhibition is also able to inhibit the increase VEGF that occurs when myeloma cells and bone marrow stroma are bound together. Combination experiments of CHR-2797 with dexamethasone demonstrate synergy, in keeping with the different mechanisms of action the two drugs. CHR-2797 in combination with the proteasome inhibitor bortezomib demonstrates an additive effect. Although both drugs target intracellular protein turnover, gene expression studies of cells treated with CHR-2797 or bortezomib show deregulation of a number of genes specific to aminopeptidase inhibition, as well as a series of genes characteristic of protein turnover. These differences in the mechanism of action of the two drugs are also reflected in the Western blot analysis that demonstrates a predominately non-caspase mediated cell death in CHR2797 compared to a caspase mediated cell death with bortezomib. In summary inhibiting intracellular protein turnover using the aminopeptidase inhibitor CHR-2797 results in myeloma cell death and represents a novel therapeutic approach for the treatment of myeloma. A phase 1 clinical trial has been initiated in haematological malignancies and the results will also be presented at this meeting.


Sign in / Sign up

Export Citation Format

Share Document