scholarly journals First Report of Crown Gall of Kiwifruit (Actinidia deliciosa) Caused by Agrobacterium fabacearum in China and the Establishment of Loop-Mediated Isothermal Amplification Technique

2021 ◽  
Vol 23 (1) ◽  
pp. 207
Author(s):  
Linan He ◽  
Jinqiao Shi ◽  
Zhibo Zhao ◽  
Fei Ran ◽  
Feixu Mo ◽  
...  

Kiwifruit is moderately sweet and sour and quite popular among consumers; it has been widely planted in some areas of the world. In 2019, the crown gall disease of kiwifruit was discovered in the main kiwifruit-producing area of Guizhou Province, China. This disease can weaken and eventually cause the death of the tree. The phylogeny, morphological and biological characteristics of the bacteria were described, and were related to diseases. The pathogenicity of this species follows the Koch hypothesis, confirming that A. fabacearum is the pathogen of crown gall disease of kiwifruit in China. In this study, Loop-mediated isothermal amplification (LAMP) analysis for genome-specific gene sequences was developed for the specific detection of A. fabacearum. The detection limit of the LAMP method is 5 × 10−7 ng/μL, which has high sensitivity. At the same time, the amplified product is stained with SYBR Green I after the reaction is completed, so that the amplification can be detected with the naked eye. LAMP analysis detected the presence of A. fabacearum in the roots and soil samples of the infected kiwifruit plant. The proposed LAMP detection technology in this study offers the advantages of ease of operation, visibility of results, rapidity, accuracy and high sensitivity, making it suitable for the early diagnosis of crown gall disease of kiwifruit.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Zhang Tie ◽  
Wang Chunguang ◽  
Wei Xiaoyuan ◽  
Zhao Xinghua ◽  
Zhong Xiuhui

To develop a rapid detection method ofStaphylococcus aureususing loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of thenucgene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was1×102 CFU/mL and that of PCR was1×104 CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection ofStaphylococcus aureushas many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection ofStaphylococcus aureus.


2008 ◽  
Vol 57 (4) ◽  
pp. 439-443 ◽  
Author(s):  
Basu Dev Pandey ◽  
Ajay Poudel ◽  
Tomoko Yoda ◽  
Aki Tamaru ◽  
Naozumi Oda ◽  
...  

A number of nucleic acid amplification assays (NAAs) have been employed to detect tubercle bacilli in clinical specimens for tuberculosis (TB) diagnosis. Among these, loop-mediated isothermal amplification (LAMP) is an NAA possessing superior isothermal reaction characteristics. In the present study, a set of six specific primers targeting the Mycobacterium tuberculosis 16S rRNA gene with high sensitivity was selected and a LAMP system (MTB-LAMP) was developed. Using this system, a total of 200 sputum samples from Nepalese patients were investigated. The sensitivity of MTB-LAMP in culture-positive samples was 100 % (96/96), and the specificity in culture-negative samples was 94.2 % (98/104, 95 % confidence interval 90.5–97.9 %). The positive and negative predictive values of MTB-LAMP were 94.1 and 100 %, respectively. These results indicate that this MTB-LAMP method may prove to be a powerful tool for the early diagnosis of TB.


2003 ◽  
Vol 69 (8) ◽  
pp. 5023-5028 ◽  
Author(s):  
Fumito Maruyama ◽  
Takehiko Kenzaka ◽  
Nobuyasu Yamaguchi ◽  
Katsuji Tani ◽  
Masao Nasu

ABSTRACT A new in situ DNA amplification technique for microscopic detection of bacteria carrying a specific gene is described. Loop-mediated isothermal amplification (LAMP) was used to detect stxA 2 in Escherichia coli O157:H7 cells. The mild permeabilization conditions and low isothermal temperature used in the in situ LAMP method caused less cell damage than in situ PCR. It allowed use of fluorescent antibody labeling in the bacterial mixture after the DNA amplification for identification of E. coli O157:H7 cells with an stxA 2 gene. Higher-contrast images were obtained with this method than with in situ PCR.


Author(s):  
Marwa F. E. Ahmed ◽  
Mazen Alssahen ◽  
Christoph Lämmler ◽  
Bernd Köhler ◽  
Martin Metzner ◽  
...  

AbstractTrueperella (T.) bernardiae is a well-known bacterial pathogen in infections of humans, rarely in animals. In the present study, five T. bernardiae isolates, isolated from five Peking ducks of four different farms, were identified by phenotypic properties, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and genotypically by sequencing the 16S ribosomal RNA (rRNA) gene, the superoxide dismutase A encoding gene sodA, and the glyceraldehyde-3-phosphate dehydrogenase encoding gene gap. In addition, the T. bernardiae isolates could be identified with a newly developed loop-mediated isothermal amplification (LAMP) assay based on the gyrase encoding housekeeping gene gyrA. All these tests clearly identified the T. bernardiae isolates to the species level. However, the detection of the specific gene gyrA with the newly designed LAMP assay appeared with a high sensitivity and specificity, and could help to identify this bacterial species in human and animal infections in future. The importance of the T. bernardiae isolates for the clinical condition of the ducks and for the problems at farm level remains unclear.


Author(s):  
D. I. Smirnova ◽  
O. A. Petrusha ◽  
A. V. Gracheva ◽  
E. A. Volynskaya ◽  
V. V. Zverev ◽  
...  

Introduction. Due to the high clinical significance of herpesvirus diseases, the searching of fast and effective methods for their diagnosis remains relevant.The aim of the study was to evaluate the diagnostic efficiency of the loop-mediated isothermal amplification of DNA with real-time fluorescent detection (RT-LAMP) with SYTO-82 dye on a model of herpes simplex virus (HSV) infection.Materials and methods. A total of 44 urogenital swabs containing type 1 and type 2 HSV DNA and 43 swabs without HSV DNA, including 33 samples containing the DNA of cytomegalovirus, Epstein-Barr virus and herpesvirus type 6, were studied. For RT-LAMP, Bst 2.0 WarmStart DNA polymerase, SYTO-82 dye, LAMP primers were used.Results. The high efficiency of HSV DNA detection in the RT-LAMP reaction with SYTO-82 dye was shown. RT-LAMP in optimal conditions allowed to reduce reaction time for 2-3 times compared to real-time PCR (to 35 minutes). Analytical sensitivity of HSV type 1 and 2 detection in RT-LAMP was 103 copies of DNA/ml. The diagnostic sensitivity and specificity of the RT-LAMP diagnosis of HSV infection were 96% and 100%, respectively.Discussion. RT-LAMP method has a high sensitivity and specificity comparable to RTPCR, while the risk of false positive results obtaining is minimal.Conclusion. Thus, the reaction of RT-LAMP with SYTO-82 dye allows quickly, with high sensitivity and specificity to detect HSV DNA in clinical material and can be considered as a promising point-of-care testing method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mevaree Srisawat ◽  
Watanalai Panbangred

TheSalmonellaenterotoxin (stn) gene exhibits high homology amongS. entericaserovars andS. bongori. A set of 6 specific primers targeting thestngene were designed for detection ofSalmonellaspp. using the loop-mediated isothermal amplification (LAMP) method. The primers amplified target sequences in all 102 strains of 87 serovars ofSalmonellatested and no products were detected in 57 non-Salmonellastrains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detectSalmonellain artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g) following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting thestngene, has great potential for detection ofSalmonellain food samples with both high specificity and high sensitivity.


2004 ◽  
Vol 28 (6) ◽  
pp. 445-450 ◽  
Author(s):  
Taketoshi Wakabayashi ◽  
Ryoko Yamashita ◽  
Tetsuhiko Kakita ◽  
Mito Kakita ◽  
Tetsuro Oshika

2021 ◽  
Vol 8 ◽  
Author(s):  
Alfredo Garcia-Venzor ◽  
Bertha Rueda-Zarazua ◽  
Eduardo Marquez-Garcia ◽  
Vilma Maldonado ◽  
Angelica Moncada-Morales ◽  
...  

As to date, more than 49 million confirmed cases of Coronavirus Disease 19 (COVID-19) have been reported worldwide. Current diagnostic protocols use qRT-PCR for viral RNA detection, which is expensive and requires sophisticated equipment, trained personnel and previous RNA extraction. For this reason, we need a faster, direct and more versatile detection method for better epidemiological management of the COVID-19 outbreak. In this work, we propose a direct method without RNA extraction, based on the Loop-mediated isothermal amplification (LAMP) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein (CRISPR-Cas12) technique that allows the fast detection of SARS-CoV-2 from patient samples with high sensitivity and specificity. We obtained a limit of detection of 16 copies/μL with high specificity and at an affordable cost. The diagnostic test readout can be done with a real-time PCR thermocycler or with the naked eye in a blue-light transilluminator. Our method has been evaluated on a small set of clinical samples with promising results.


Author(s):  
Meng Yee Lai ◽  
Soo Nee Tang ◽  
Yee Ling Lau

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.


Sign in / Sign up

Export Citation Format

Share Document