scholarly journals Integration of Genomic Profiling and Organoid Development in Precision Oncology

2021 ◽  
Vol 23 (1) ◽  
pp. 216
Author(s):  
Hyunho Yoon ◽  
Sanghoon Lee

Precision oncology involves an innovative personalized treatment strategy for each cancer patient that provides strategies and options for cancer treatment. Currently, personalized cancer medicine is primarily based on molecular matching. Next-generation sequencing and related technologies, such as single-cell whole-transcriptome sequencing, enable the accurate elucidation of the genetic landscape in individual cancer patients and consequently provide clinical benefits. Furthermore, advances in cancer organoid models that represent genetic variations and mutations in individual cancer patients have direct and important clinical implications in precision oncology. This review aimed to discuss recent advances, clinical potential, and limitations of genomic profiling and the use of organoids in breast and ovarian cancer. We also discuss the integration of genomic profiling and organoid models for applications in cancer precision medicine.

Author(s):  
Vaidehi Jobanputra ◽  
Kazimierz O. Wrzeszczynski ◽  
Reinhard Buttner ◽  
Carlos Caldas ◽  
Edwin Cuppen ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 609
Author(s):  
Caterina Fumagalli ◽  
Elena Guerini-Rocco ◽  
Massimo Barberis

Personalized cancer therapy matches the plan of treatment with specific molecular alterations [...]


2021 ◽  
pp. 106689692110313
Author(s):  
Alexander M. Strait ◽  
Julia A. Bridge ◽  
Anthony J. Iafrate ◽  
Marilyn M. Li ◽  
Feng Xu ◽  
...  

Myofibroblastoma is a rare, benign stromal tumor with a diverse morphologic spectrum. Mammary-type myofibroblastoma (MTMF) is the extra-mammary counterpart of this neoplasm and its occurrence throughout the body has become increasingly recognized. Similar morphologic variations of MTMF have now been described which mirror those seen in the breast. We describe a case of intra-abdominal MTMF composed of short fascicles of eosinophilic spindle cells admixed with mature adipose tissue. The spindle cells stained diffusely positive for CD34, desmin, smooth muscle actin, and h-caldesmon by immunohistochemistry. Concurrent loss of RB1 (13q14) and 13q34 loci were confirmed by fluorescence in situ hybridization whereas anchored multiplex PCR and whole transcriptome sequencing did not reveal any pathognomonic fusions suggesting an alternative diagnosis. To the best of our knowledge this is the first documented case of leiomyomatous variant of MTMF.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Junyu Long ◽  
Dongxu Wang ◽  
Xu Yang ◽  
Anqiang Wang ◽  
Yu Lin ◽  
...  

Abstract Background Immune checkpoint inhibitor (ICI) therapy elicits durable antitumor responses in patients with many types of cancer. Genomic mutations may be used to predict the clinical benefits of ICI therapy. NOTCH homolog-4 (NOTCH4) is frequently mutated in several cancer types, but its role in immunotherapy is still unclear. Our study is the first to study the association between NOTCH4 mutation and the response to ICI therapy. Methods We tested the predictive value of NOTCH4 mutation in the discovery cohort, which included non-small cell lung cancer, melanoma, head and neck squamous cell carcinoma, esophagogastric cancer, and bladder cancer patients, and validated it in the validation cohort, which included non-small cell lung cancer, melanoma, renal cell carcinoma, colorectal cancer, esophagogastric cancer, glioma, bladder cancer, head and neck cancer, cancer of unknown primary, and breast cancer patients. Then, the relationships between NOTCH4 mutation and intrinsic and extrinsic immune response mechanisms were studied with multiomics data. Results We collected an ICI-treated cohort (n = 662) and found that patients with NOTCH4 mutation had better clinical benefits in terms of objective response rate (ORR: 42.9% vs 25.9%, P = 0.007), durable clinical benefit (DCB: 54.0% vs 38.1%, P = 0.021), progression-free survival (PFS, hazard ratio [HR] = 0.558, P < 0.001), and overall survival (OS, HR = 0.568, P = 0.006). In addition, we validated the prognostic value of NOTCH4 mutation in an independent ICI-treated cohort (n = 1423). Based on multiomics data, we found that NOTCH4 mutation is significantly associated with enhanced immunogenicity, including a high tumor mutational burden, the expression of costimulatory molecules, and activation of the antigen-processing machinery, and NOTCH4 mutation positively correlates activated antitumor immunity, including infiltration of diverse immune cells and various immune marker sets. Conclusions Our findings indicated that NOTCH4 mutation serves as a novel biomarker correlated with a better response to ICI therapy.


2021 ◽  
Vol 16 (3) ◽  
pp. S429
Author(s):  
L. Wang ◽  
X. Liu ◽  
X. Yu ◽  
Z. Zhao ◽  
Y. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document