scholarly journals Two Novel Dimorphism-Related Virulence Factors of Zymoseptoria tritici Identified Using Agrobacterium-Mediated Insertional Mutagenesis

2021 ◽  
Vol 23 (1) ◽  
pp. 400
Author(s):  
Alexander Yemelin ◽  
Annamaria Brauchler ◽  
Stefan Jacob ◽  
Andrew J. Foster ◽  
Julian Laufer ◽  
...  

Diseases caused by dimorphic phytopathogenic and systemic dimorphic fungi have markedly increased in prevalence in the last decades, and understanding the morphogenic transition to the virulent state might yield novel means of controlling dimorphic fungi. The dimorphic fungus Z. tritici causes significant economic impact on wheat production, and yet the regulation of the dimorphic switch, a key first step in successful plant colonization, is still largely unexplored in this fungus. The fungus is amenable to suppression by fungicides at this switch point, and the identification of the factors controlling the dimorphic switch provides a potential source of novel targets to control Septoria tritici blotch (STB). Inhibition of the dimorphic switch can potentially prevent penetration and avoid any damage to the host plant. The aim of the current work was to unveil genetic determinants of the dimorphic transition in Z. tritici by using a forward genetics strategy. Using this approach, we unveiled two novel factors involved in the switch to the pathogenic state and used reverse genetics and complementation to confirm the role of the novel virulence factors and further gained insight into the role of these genes, using transcriptome analysis via RNA-Seq. The transcriptomes generated potentially contain key determinants of the dimorphic transition.

2017 ◽  
Vol 30 (3) ◽  
pp. 231-244 ◽  
Author(s):  
Javier Palma-Guerrero ◽  
Xin Ma ◽  
Stefano F. F. Torriani ◽  
Marcello Zala ◽  
Carolina S. Francisco ◽  
...  

Zymoseptoria tritici is an ascomycete fungus that causes Septoria tritici blotch, a globally distributed foliar disease on wheat. Z. tritici populations are highly polymorphic and exhibit significant quantitative variation for virulence. Despite its importance, the genes responsible for quantitative virulence in this pathogen remain largely unknown. We investigated the expression profiles of four Z. tritici strains differing in virulence in an experiment conducted under uniform environmental conditions. Transcriptomes were compared at four different infection stages to characterize the regulation of gene families thought to be involved in virulence and to identify new virulence factors. The major components of the fungal infection transcriptome showed consistent expression profiles across strains. However, strain-specific regulation was observed for many genes, including some encoding putative virulence factors. We postulate that strain-specific regulation of virulence factors can determine the outcome of Z. tritici infections. We show that differences in gene expression may be major determinants of virulence variation among Z. tritici strains, adding to the already known contributions to virulence variation based on differences in gene sequence and gene presence/absence polymorphisms.


2020 ◽  
Vol 6 (4) ◽  
pp. 368
Author(s):  
Teeratas Kijpornyongpan ◽  
M. Catherine Aime

The corn smut fungus Ustilago maydis serves as a model species for studying fungal dimorphism and its role in phytopathogenic development. The pathogen has two growth phases: a saprobic yeast phase and a pathogenic filamentous phase. Dimorphic transition of U. maydis involves complex processes of signal perception, mating, and cellular reprogramming. Recent advances in improvement of reference genomes, high-throughput sequencing and molecular genetics studies have been expanding research in this field. However, the biology of other non-model species is frequently overlooked. This leads to uncertainty regarding how much of what is known in U. maydis is applicable to other dimorphic fungi. In this review, we will discuss dimorphic fungi in the aspects of physiology, reproductive biology, genomics, and molecular genetics. We also perform comparative analyses between U. maydis and other fungi in Ustilaginomycotina, the subphylum to which U. maydis belongs. We find that lipid/hydrophobicity is a potential common cue for dimorphic transition in plant-associated dimorphic fungi. However, genomic profiles alone are not adequate to explain dimorphism across different fungi.


Author(s):  
Maria G. Villa-Rivera ◽  
Ulises Conejo-Saucedo ◽  
Alicia Lara-Marquez ◽  
Horacio Cano-Camacho ◽  
Everardo Lopez-Romero ◽  
...  
Keyword(s):  

1981 ◽  
Vol 78 (7) ◽  
pp. 4596-4600 ◽  
Author(s):  
B. Maresca ◽  
A. M. Lambowitz ◽  
V. B. Kumar ◽  
G. A. Grant ◽  
G. S. Kobayashi ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1108
Author(s):  
Dominika Piaskowska ◽  
Urszula Piechota ◽  
Magdalena Radecka-Janusik ◽  
Paweł Czembor

Septoria tritici blotch (STB) is one of the most devastating foliar diseases of wheat worldwide. Host resistance is the most economical and safest method of controlling the disease, and information on resistance loci is crucial for effective breeding for resistance programs. In this study we used a mapping population consisting of 126 doubled-haploid lines developed from a cross between the resistant cultivar Mandub and the susceptible cultivar Begra. Three monopycnidiospore isolates of Z. tritici with diverse pathogenicity were used to test the mapping population and parents’ STB resistance at the seedling stage (under a controlled environment) and adult plant stage (polytunnel). For both types of environments, the percentage leaf area covered by necrosis (NEC) and pycnidia (PYC) was determined. A linkage map comprising 5899 DArTSNP and silicoDArT markers was used for the quantitative trait loci (QTL) analysis. The analysis showed five resistance loci on chromosomes 1B, 2B and 5B, four of which were derived from cv. Mandub. The location of QTL detected in our study on chromosomes 1B and 5B may suggest a possible identity or close linkage with Stb2/Stb11/StbWW and Stb1 loci, respectively. QStb.ihar-2B.4 and QStb.ihar-2B.5 detected on chromosome 2B do not co-localize with any known Stb genes. QStb.ihar-2B.4 seems to be a new resistance locus with a moderate effect (explaining 29.3% of NEC and 31.4% of PYC), conferring resistance at the seedling stage. The phenotypic variance explained by QTL detected in cv. Mandub ranged from 11.9% to 70.0%, thus proving that it is a good STB resistance source and can potentially be utilized in breeding programs.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 331
Author(s):  
Montserrat Palau ◽  
Núria Piqué ◽  
M. José Ramírez-Lázaro ◽  
Sergio Lario ◽  
Xavier Calvet ◽  
...  

Helicobacter pylori is a common pathogen associated with several severe digestive diseases. Although multiple virulence factors have been described, it is still unclear the role of virulence factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help to find genetic markers of virulence strains. In this work, we analyzed three complete genomes from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma, using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences among the three genomes were mainly related to outer membrane proteins, methylases, restriction modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared genes, higher number of unique genes, and more polymorphisms were found in this genome. With all the accumulated information, no significant differences were found among the isolates regarding virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be linked to the pathogenicity of H. pylori.


1998 ◽  
Vol 188 (10) ◽  
pp. 1907-1916 ◽  
Author(s):  
Akio Abe ◽  
Ursula Heczko ◽  
Richard G. Hegele ◽  
B. Brett Finlay

Enteropathogenic Escherichia coli (EPEC) belongs to a family of related bacterial pathogens, including enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other human and animal diarrheagenic pathogens that form attaching and effacing (A/E) lesions on host epithelial surfaces. Bacterial secreted Esp proteins and a type III secretion system are conserved among these pathogens and trigger host cell signal transduction pathways and cytoskeletal rearrangements, and mediate intimate bacterial adherence to epithelial cell surfaces in vitro. However, their role in pathogenesis is still unclear. To investigate the role of Esp proteins in disease, mutations in espA and espB were constructed in rabbit EPEC serotype O103 and infection characteristics were compared to that of the wild-type strain using histology, scanning and transmission electron microscopy, and confocal laser scanning microscopy in a weaned rabbit infection model. The virulence of EspA and EspB mutant strains was severely attenuated. Additionally, neither mutant strain formed A/E lesions, nor did either one cause cytoskeletal actin rearrangements beneath the attached bacteria in the rabbit intestine. Collectively, this study shows for the first time that the type III secreted proteins EspA and EspB are needed to form A/E lesions in vivo and are indeed virulence factors. It also confirms the role of A/E lesions in disease processes.


Sign in / Sign up

Export Citation Format

Share Document