scholarly journals Effect of Thermocycling on the Bond Strength of Self-Adhesive Resin Cements Used for Luting CAD/CAM Ceramics to Human Dentin

2022 ◽  
Vol 23 (2) ◽  
pp. 745
Author(s):  
Andrzej Malysa ◽  
Joanna Wezgowiec ◽  
Wojciech Grzebieluch ◽  
Dariusz P. Danel ◽  
Mieszko Wieckiewicz

The aim of the study was to evaluate the influence of thermocycling on the shear bond strength of self-adhesive, self-etching resin cements luted to human dentin and computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics. Three modern self-adhesive dental cements (Maxcem Elite, RelyX U200, Panavia SA) were used to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. One conventional cement (Panavia V5) served as a control. After preparation, the samples were subjected to thermocycling as a method of artificial aging of dental materials applied to simulate long-term use in oral conditions. Shear bond strength was evaluated according to PN-EN ISO 29022:2013-10 and failure modes were observed under a light microscope. Statistical analysis was performed. The study demonstrated that a combination of ceramics and cements directly impacts the bond strength. The highest bond strength was observed in Panavia V5, lower in Panavia SA and Maxcem Elite and the lowest–in RelyX U200. Adhesive failure between human dentin and cements was the most common failure mode. Moreover, thermocycling highly decreased bond strength of self-adhesive, self-etching cements.

2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Andrzej Małysa ◽  
Joanna Weżgowiec ◽  
Dariusz Danel ◽  
Klauss Boening ◽  
Katarzyna Walczak ◽  
...  

Purpose: The aim of the study was to evaluate the shear bond strength of CAD/CAM ceramics to dentin after cementation with conventional or self-adhesive resin cements. Methods: Three self-adhesive, self-etching cements (Panavia SA, RelyX U200, Maxcem Elite), and one conventional cement (Panavia V5), were selected to lute three CAD/CAM ceramics (IPS Empress CAD, IPS e.max CAD, IPS e.max ZirCAD) onto the dentin. The bond strength was evaluated using a shear strength test according to the PN-EN ISO 29022:2013-10. Evaluation of the differences was performed using the Statistica software. Failure modes were analyzed using a light microscope. Results: All the studied cements differed (regardless of the ceramic type) in the bond strength. The highest bond strength was observed in Panavia V5, lower – in RelyX U200 and Panavia SA, and the lowest – in Maxcem. For IPS e.max ZirCAD, it was observed that compared to Panavia V5, the other cements were characterized by a significantly higher bond strength. For the IPS Empress CAD and the IPS e.max CAD, Panavia V5 displayed the highest bond strength. For all the studied self-adhesive cements, the failure of adhesion between the cement and dentin was predominant mode. Conclusions: Significant differences were found in the shear bond strengths of the CAD/CAM ceramics luted to dentin using tested self-adhesive and conventional cements. The bond strength depended on the combination of ceramic and cement. The IPS e.max ZirCAD had the highest bond strength to dentin after cementation with RelyX U200, while the IPS Empress CAD and IPS e.max CAD – with Panavia V5.


2019 ◽  
Vol 44 (3) ◽  
pp. 262-272
Author(s):  
EM Meda ◽  
RN Rached ◽  
SA Ignácio ◽  
IA Fornazari ◽  
EM Souza

SUMMARY Purpose: The aim of this study was to evaluate the effect of adhesive strategy and time on the microtensile bond strength of a computer-aided design/computer-aided manufacturing (CAD/CAM) composite to dentin. Methods and Materials: Sixty CAD/CAM composite blocks were bonded to human dentin with simplified bonding agents using etch-and-rinse and self-etching approaches and amine-based and amine-free resin cements, with and without the application of a dual-cure activator (DCA; n=10): SBP-ARC (Adper Single Bond Plus + RelyX ARC), SBP-RXU (Adper Single Bond Plus + RelyX Ultimate), SBP-DCA-RXU (Adper Single Bond Plus + DCA + RelyX Ultimate), SBU-ARC (Scotchbond Universal + RelyX ARC), SBU-RXU (Scotchbond Universal + RelyX Ultimate), and SBU-DCA-ARC (Scotchbond Universal + DCA + RelyX ARC). Each specimen was light cured for 40 seconds under load and stored in distilled water at 37°C for seven days. Stick-shaped specimens (1.0 mm2) were obtained. Half of the specimens underwent microtensile bond strength testing, and the other half were subjected to the same tests after six months of storage. Failure mode was determined using an optical microscope (40×). The data were analyzed by a two-way analysis of variance followed by the Games-Howell test and Student t-test (preset alpha of 0.05). Results: After seven days, SBU-RXU presented the highest mean bond strength, statistically different from only SBU-ARC (p<0.05). Most of the groups exhibited a statistically significant reduction in bond strength after 6 months (p<0.05), except SBP-RXU and SBU-ARC (p>0.05). Conclusion: The adhesive strategy, with different associations between adhesive systems and resin cements, as well as the use of a DCA, affected the bond strength of both amine-free and amine-based resin cements to a CAD/CAM composite.


2017 ◽  
Vol 18 (7) ◽  
pp. 622-626 ◽  
Author(s):  
Shilpa H Bhandi ◽  
Mohamed Moustafa Awad ◽  
H Alqahtani ◽  
A Al-Mudahi ◽  
MS Murayshed ◽  
...  

ABSTRACT Aim To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. Background The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Conclusion Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. Clinical significance An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials. How to cite this article Awad MM, Alqahtani H, Al-Mudahi A, Murayshed MS, Alrahlah A, Bhandi SH. Adhesive Bonding to Computer-aided Design/Computer-aided Manufacturing Esthetic Dental Materials: An Overview. J Contemp Dent Pract 2017;18(7):622-626.


2014 ◽  
Vol 8 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Jorge Gonzalez

Since the immemorial, the replacement of missing teeth has been a medical and cosmetic necessity for human kind. Nowadays, middle-aged population groups have experienced improved oral health, as compared to previous generations, and the percentage of edentulous adults can be expected to further decline. However, with the continued increase in the number of older adult population, it is anticipated that the need for some form of full-mouth restoration might increase from 53.8 million in 1991 to 61 million in 2020 [1]. Denture prosthetics has undergone many development stages since the first dentures were fabricated. The introduction of computer-aided design/computer aided manufacturing (CAD/CAM) has resulted in a more accurate manufacturing of prosthetic frameworks, greater accuracy of dental restorations, and in particular, implant supported prosthesis.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1629
Author(s):  
Hassan Faez Abdullah Gailani ◽  
Cristina Benavides-Reyes ◽  
María Victoria Bolaños-Carmona ◽  
Eva Rosel-Gallardo ◽  
Purificación González-Villafranca ◽  
...  

The objective of this work was to compare the micro-tensile bond strength (µTBS) of CAD/CAM (Computer-Aided Design/ Computer-Aided Manufacturing) specimens cemented with different pairing of adhesives and resin-cements using two Immediate Dentin Dealing (IDS) approaches in comparison with Delay Dentin Sealing (DDS). Coronal dentin from 108 molars were divided into nine groups (n = 12) depending on the adhesive/resin-cement (A-C) assigned. Lava™ Ultimate (4 × 10 × 10 mm) was cemented according to different strategies: IDS1(cementation after dentin sealing), DDS (dentin sealing and cementation at 2-weeks), IDS2 (immediate dentin sealing and cementation at 2-weeks). Samples were sectioned and tested until failure to determine the µTBS. Failure mode was categorized as dentin/cement (DC), at Lava™ Ultimate/cement (LC) and hybrid (H). Kruskal–Wallis and Mann–Whitney U tests and influence of the type of failure on the µTBS by survival analysis with competing risk was explored. Mostly, µTBS values were equal or higher in IDS2 than DDS. In general, A-Cs that showed higher µTBS, have high percentages of LC failure. Survival analysis with competing risk between DC + H and LC values showed that some A-Cs would significantly increase the µTBS values for IDS2. A-Cs with the highest adhesion values showed a high percentage of fractures at the LC interface, suggesting that the adhesion at the adhesive/dentin interface would be higher.


2022 ◽  
Vol 12 (2) ◽  
pp. 551
Author(s):  
Andrea Scribante ◽  
Simone Gallo ◽  
Maurizio Pascadopoli ◽  
Pietro Canzi ◽  
Stefania Marconi ◽  
...  

In the last years, both medicine and dentistry have come across a revolution represented by the introduction of more and more digital technologies for both diagnostic and therapeutic purposes. Additive manufacturing is a relatively new technology consisting of a computer-aided design and computer-aided manufacturing (CAD/CAM) workflow, which allows the substitution of many materials with digital data. This process requires three fundamental steps represented by the digitalization of an item through a scanner, the editing of the data acquired using a software, and the manufacturing technology to transform the digital data into a final product, respectively. This narrative review aims to discuss the recent introduction in dentistry of the abovementioned digital workflow. The main advantages and disadvantages of the process will be discussed, along with a brief description of the possible applications on orthodontics.


Sign in / Sign up

Export Citation Format

Share Document