scholarly journals Interactive Dynamics of Cell Volume and Cell Death in Human Erythrocytes Exposed to α-Hemolysin from Escherichia coli

2022 ◽  
Vol 23 (2) ◽  
pp. 872
Author(s):  
Nicolas A. Saffioti ◽  
Natalia Lauri ◽  
Lucia Cané ◽  
Rodolfo Gonzalez-Lebrero ◽  
Karina Alleva ◽  
...  

α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.

1999 ◽  
Vol 276 (6) ◽  
pp. G1391-G1400 ◽  
Author(s):  
Richard M. Roman ◽  
Andrew P. Feranchak ◽  
Kelli D. Salter ◽  
Yu Wang ◽  
J. Gregory Fitz

P2Y receptor stimulation increases membrane Cl− permeability in biliary epithelial cells, but the source of extracellular nucleotides and physiological relevance of purinergic signaling to biliary secretion are unknown. Our objectives were to determine whether biliary cells release ATP under physiological conditions and whether extracellular ATP contributes to cell volume regulation and transepithelial secretion. With the use of a sensitive bioluminescence assay, constitutive ATP release was detected from human Mz-ChA-1 cholangiocarcinoma cells and polarized normal rat cholangiocyte monolayers. ATP release increased rapidly during cell swelling induced by hypotonic exposure. In Mz-ChA-1 cells, removal of extracellular ATP (apyrase) and P2 receptor blockade (suramin) reversibly inhibited whole cell Cl− current activation and prevented cell volume recovery during hypotonic stress. Moreover, exposure to apyrase induced cell swelling under isotonic conditions. In intact normal rat cholangiocyte monolayers, hypotonic perfusion activated apical Cl−currents, which were inhibited by addition of apyrase and suramin to bathing media. These findings indicate that modulation of ATP release by the cellular hydration state represents a potential signal coordinating cell volume with membrane Cl− permeability and transepithelial Cl−secretion.


1986 ◽  
Vol 88 (6) ◽  
pp. 719-738 ◽  
Author(s):  
D Kaji

Studies have been carried out on human erythrocytes to examine the alterations of K transport induced by swelling or shrinking the cells by osmotic and isosmotic methods. Hypotonic swelling of erythrocytes (relative cell volume, 1.20) resulted in a striking, four- to fivefold augmentation in the ouabain-resistant K influx over the value obtained at a normal cell volume. Shrinking the cells in hypertonic media resulted in a small but statistically significant reduction in K influx. Three different methods of varying cell volume gave similar results. These include the addition of sucrose and of NaCl to hypotonic media and the isosmotic (nystatin) method. The major fraction of the K influx in swollen cells is specific in its requirement for Cl or Br and is not supported by thiocyanate, iodide, nitrate, methylsulfate, or acetate. Bumetanide (0.1 mM), MK-196 (0.2 mM), and piretanide (1 mM) are poorly effective in suppressing K uptake in swollen cells, but at higher concentrations, bumetanide (1 mM) inhibits 80% of the Cl-dependent K influx in swollen cells. The bumetanide concentration required to inhibit 50% of the Cl-dependent K influx is 0.17 mM. The volume-sensitive K influx is independent of both extracellular and intracellular Na, so that the (Na + K + 2Cl) cotransport pathway is not a likely mediator of the volume-sensitive K transport. A variety of inhibitors of the Ca-activated K channel are ineffective in suppressing swelling-induced K influx. Like K uptake, the efflux of K is also enhanced by cell swelling. Swelling-activated K efflux is Cl dependent, is independent of extracellular and intracellular Na, and is observed with both hypotonic and isosmotic methods of cell swelling. The activation of K efflux by cell swelling is observed in K-free media, which suggests that the volume-sensitive K transport pathway is capable of net K efflux. The addition of external K to hypotonic media resulted in an increase in K efflux compared with the efflux in K-free media, and this increase was probably due to K/K exchange. Thus, hypotonic or isosmotic swelling of human erythrocytes results in the activation of a ouabain-resistant, Cl-dependent, Na-independent transport pathway that is capable of mediating both net K efflux and K/K exchange.


1984 ◽  
Vol 247 (3) ◽  
pp. C293-C298 ◽  
Author(s):  
S. Grinstein ◽  
J. D. Goetz ◽  
W. Furuya ◽  
A. Rothstein ◽  
E. W. Gelfand

A new method was developed to detect the activity of the Na+-H+ exchange system as changes in cell volume. The cytoplasmic pH of isolated cells in suspension was lowered by incubation in Na-propionate medium, due to permeation of the protonated acid. This resulted in activation of Na+-H+ countertransport, measurable either as a Na+-dependent alkalinization or as an increase in 22Na+ uptake, both of which are amiloride sensitive. The continued operation of the antiport on prolonged exposure to Na-propionate results in a considerable increase in Na+ (and presumably propionate-) content. This is accompanied by an osmotic water shift and cell swelling, detectable by electronic sizing. This method was used to investigate the presence of the Na+-H+ exchanger in human platelets, neutrophils, lymphocytes, and monocytes as well as in cultured cell lines of B and T lymphoblasts and of macrophages. All these cell types displayed an amiloride-sensitive swelling when suspended in Na-propionate media. The results suggest the ubiquity of the Na+-H+ exchange system in the plasma membrane of nucleated mammalian blood cells.


2019 ◽  
Vol 20 (14) ◽  
pp. 3475 ◽  
Author(s):  
Michael Kittl ◽  
Katharina Helm ◽  
Marlena Beyreis ◽  
Christian Mayr ◽  
Martin Gaisberger ◽  
...  

Many cell types express an acid-sensitive outwardly rectifying (ASOR) anion current of an unknown function. We characterized such a current in BV-2 microglial cells and then studied its interrelation with the volume-sensitive outwardly rectifying (VSOR) Cl− current and the effect of acidosis on cell volume regulation. We used patch clamp, the Coulter method, and the pH-sensitive dye BCECF to measure Cl− currents and cell membrane potentials, mean cell volume, and intracellular pH, respectively. The ASOR current activated at pH ≤ 5.0 and displayed an I− > Cl− > gluconate− permeability sequence. When compared to the VSOR current, it was similarly sensitive to DIDS, but less sensitive to DCPIB, and insensitive to tamoxifen. Under acidic conditions, the ASOR current was the dominating Cl− conductance, while the VSOR current was apparently inactivated. Acidification caused cell swelling under isotonic conditions and prevented the regulatory volume decrease under hypotonicity. We conclude that acidification, associated with activation of the ASOR- and inactivation of the VSOR current, massively impairs cell volume homeostasis. ASOR current activation could affect microglial function under acidotoxic conditions, since acidosis is a hallmark of pathophysiological events like inflammation, stroke or ischemia and migration and phagocytosis in microglial cells are closely related to cell volume regulation.


1980 ◽  
Vol 35 (3) ◽  
pp. 241-259 ◽  
Author(s):  
Bruce R. Levin ◽  
Virginia A. Rice

SUMMARYA mathematical model for the kinetics of transfer of non-selftransmissible (nonconjugative) plasmids by mobilizing conjugative factors is presented and methods to estimate its parameters described. Using batch and chemostat cultures ofEscherichia coliK-12 with the nonconjugative plasmid pCR1 and an F′ mobilizing factor, the parameters of this model were estimated. The observed changes in concentrations of the different parental and transconjugant cell types and the changes in these concentrations anticipated from the model are presented for two different ‘mating’ combinations in both exponentially growing and equilibrium chemostat populations ofE. coli. The results of these experiments are interpreted to suggest that for bacterial populations dividing at a constant rate in liquid culture, the kinetics of mobilization transfer of nonconjugative plasmids can be reasonably well described by a simple set of mass action differential equations. These results also suggest that the carriage of the nonconjugative plasmid pCR1 has little, if any, effect on the capacity of a host bacterium to donate or receive conjugativeF′plasmids.


2000 ◽  
Vol 116 (3) ◽  
pp. 363-378 ◽  
Author(s):  
Richard T. Timmer ◽  
Robert B. Gunn

The kinetics of sodium-stimulated phosphate flux and phosphate-stimulated sodium flux in human red cells have been previously described (Shoemaker, D.G., C.A. Bender, and R.B. Gunn. 1988. J. Gen. Physiol. 92:449–474). However, despite the identification of multiple isoforms in three gene families (Timmer, R.T., and R.B. Gunn. 1998. Am. J. Physiol. Cell Physiol. 274:C757–C769), the molecular basis for the sodium-phosphate cotransporter in erythrocytes is unknown. Most cells express multiple isoforms, thus disallowing explication of isoform-specific kinetics and function. We have found that erythrocyte membranes express one dominant isoform, hBNP-1, to which the kinetics can thus be ascribed. In addition, because the erythrocyte Na-PO4 cotransporter can also mediate Li-PO4 cotransport, it has been suggested that this transporter functions as the erythrocyte Na–Li exchanger whose activity is systematically altered in patients with bipolar disease and patients with essential hypertension. To determine the molecular basis for the sodium-phosphate cotransporter, we reasoned that if the kinetics of phosphate transport in a nucleated erythroid-like cell paralleled those of the Na-activated pathway in anucleated erythrocytes and yet were distinct from those known for other Na-PO4 cotransporters, then the expressed genes may be the same in both cell types. In this study, we show that the kinetics of sodium phosphate cotransport were similar in anuclear human erythrocytes and K562 cells, a human erythroleukemic cell line. Although the erythrocyte fluxes were 750-fold smaller, the half-activation concentrations for phosphate and sodium and the relative cation specificities for activation of 32PO4 influx were similar. Na-activation curves for both cell types showed cooperativity consistent with the reported stoichiometry of more than one Na cotransported per PO4. In K562 cells, external lithium activation of phosphate influx was also cooperative. Inhibition by arsenate, KI = 2.6–2.7 mM, and relative inhibition by amiloride, amiloride analogs, phosphonoformate, and phloretin were similar. These characteristics were different from those reported for hNaPi-3 and hPiT-1 in other systems. PCR analysis of sodium-phosphate cotransporter isoforms in K562 cells demonstrated the presence of mRNAs for hPiT-1, hPiT-2, and hBNP-1. The mRNAs for hNaPi-10 and hNaPi-3, the other two known isoforms, were absent. Western analysis of erythrocytes and K562 cells with isoform-specific antibodies detected the presence of only hBNP-1, an isoform expressed in brain neurons and glia. The similarities in the kinetics and the expression of only hBNP-1 protein in the two cell types is strong evidence that hBNP-1 is the erythrocyte and K562 cell sodium-phosphate cotransporter.


2013 ◽  
Vol 305 (4) ◽  
pp. C361-C372 ◽  
Author(s):  
Sergei N. Orlov ◽  
Alexandra A. Platonova ◽  
Pavel Hamet ◽  
Ryszard Grygorczyk

Cell death is accompanied by the dissipation of electrochemical gradients of monovalent ions across the plasma membrane that, in turn, affects cell volume via modulation of intracellular osmolyte content. In numerous cell types, apoptotic and necrotic stimuli caused cell shrinkage and swelling, respectively. Thermodynamics predicts a cell type-specific rather than an ubiquitous impact of monovalent ion transporters on volume perturbations in dying cells, suggesting their diverse roles in the cell death machinery. Indeed, recent data showed that apoptotic collapse may occur in the absence of cell volume changes and even follow cell swelling rather than shrinkage. Moreover, side-by-side with cell volume adjustment, monovalent ion transporters contribute to cell death machinery engagement independently of volume regulation via cell type-specific signaling pathways. Thus, inhibition of Na+-K+-ATPase by cardiotonic steroids (CTS) rescues rat vascular smooth muscle cells from apoptosis via a novel Na+i-K+i-mediated, Ca2+i-independent mechanism of excitation-transcription coupling. In contrast, CTS kill renal epithelial cells independently of Na+-K+-ATPase inhibition and increased [Na+]i/[K+]i ratio. The molecular origin of [Na+]i/[K+]i sensors involved in the inhibition of apoptosis as well as upstream intermediates of Na+i/K+i-independent death signaling triggered by CTS remain unknown.


1989 ◽  
Vol 259 (3) ◽  
pp. 893-896 ◽  
Author(s):  
C E King ◽  
P T Hawkins ◽  
L R Stephens ◽  
R H Michell

When intact human erythrocytes are incubated at metabolic steady state in a chloride-free medium containing [32P]Pi, there is rapid labelling of the gamma-phosphate of ATP, followed by a slower labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] [King, Stephens, Hawkins, Guy & Michell (1987) Biochem. J. 244, 209-217]. We have analysed the early kinetics of the labelling of these phosphate groups, in order to determine: (a) the steady-state rates of the interconversions of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2; and (b) the fractions of the total cellular complement of PtdIns4P and PtdIns(4,5)P2 that participate in this steady-state turnover. The experimental data most closely fit a pattern of PtdIns4P and PtdIns(4,5)P2 turnover in which one-quarter of the total cellular complement of each lipid is in the metabolic pool that participates in rapid metabolic turnover, with rate constants of 0.028 min-1 for the interconversion of PtdIns and PtdIns4P, and of 0.010 min-1 for the PtdIns4P/PtdIns(4,5)P2 cycle. These rate constants represent metabolic fluxes of approx. 2.1 nmol of lipid/h per ml of packed erythrocytes between PtdIns and PtdIns4P and of approx. 5.7 nmol/h per ml of cells between PtdIns4P and PtdIns(4,5)P2.


1984 ◽  
Vol 4 (9) ◽  
pp. 1800-1806
Author(s):  
T H Bestor ◽  
S B Hellewell ◽  
V M Ingram

Methyl-accepting assays and a sensitive method for labeling specific CpG sites have been used to show that the DNA of F9 embryonal carcinoma cells decreases in 5-methylcytosine content by ca. 9% during retinoic acid-induced differentiation, whereas the DNA of dimethyl sulfoxide-induced Friend murine erythroleukemia (MEL) cells loses ca. 3.8% of its methyl groups. These values correspond to the demethylation of 2.2 X 10(6) and 0.9 X 10(6) 5'-CpG-3' sites per haploid genome in differentiating F9 and MEL cells, respectively. Fluorography of DNA restriction fragments methylated in vitro and displayed on agarose gels showed that demethylation occurred throughout the genome. In uninduced F9 cells, the sequence TCGA tended to be more heavily methylated than did the sequence CCGG, whereas this tendency was reversed in MEL cells. The kinetics of in vitro DNA methylation reactions catalyzed by MEL cell DNA methyltransferase showed that substantial numbers of hemimethylated sites accumulate in the DNA of terminally differentiating F9 and MEL cells, implying that a partial loss of DNA-methylating activity may accompany terminal differentiation in these two cell types.


Sign in / Sign up

Export Citation Format

Share Document