scholarly journals Noisy ECG Signal Analysis for Automatic Peak Detection

Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 35 ◽  
Author(s):  
Matteo D’Aloia ◽  
Annalisa Longo ◽  
Maria Rizzi

Cardiac signal processing is usually a computationally demanding task as signals are heavily contaminated by noise and other artifacts. In this paper, an effective approach for peak point detection and localization in noisy electrocardiogram (ECG) signals is presented. Six stages characterize the implemented method, which adopts the Hilbert transform and a thresholding technique for the detection of zones inside the ECG signal which could contain a peak. Subsequently, the identified zones are analyzed using the wavelet transform for R point detection and localization. The conceived signal processing technique has been evaluated, adopting ECG signals belonging to MIT-BIH Noise Stress Test Database, which includes specially selected Holter recordings characterized by baseline wander, muscle artifacts and electrode motion artifacts as noise sources. The experimental results show that the proposed method reaches most satisfactory performance, even when challenging ECG signals are adopted. The results obtained are presented, discussed and compared with some other R wave detection algorithms indicated in literature, which adopt the same database as a test bench. In particular, for a signal to noise ratio (SNR) equal to 6 dB, results with minimal interference from noise and artifacts have been obtained, since Se e +P achieve values of 98.13% and 96.91, respectively.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yatao Zhang ◽  
Shoushui Wei ◽  
Yutao Long ◽  
Chengyu Liu

This study explored the performance of multiscale entropy (MSE) for the assessment of mobile ECG signal quality, aiming to provide a reasonable application guideline. Firstly, the MSE for the typical noises, that is, high frequency (HF) noise, low frequency (LF) noise, and power-line (PL) noise, was analyzed. The sensitivity of MSE to the signal to noise ratio (SNR) of the synthetic artificial ECG plus different noises was further investigated. The results showed that the MSE values could reflect content level of various noises contained in the ECG signals. For the synthetic ECG plus LF noise, the MSE was sensitive to SNR within higher range of scale factor. However, for the synthetic ECG plus HF noise, the MSE was sensitive to SNR within lower range of scale factor. Thus, a recommended scale factor range within 5 to 10 was given. Finally, the results were verified on the real ECG signals, which were derived from MIT-BIH Arrhythmia Database and Noise Stress Test Database. In all, MSE could effectively assess the noise level on the real ECG signals, and this study provided a valuable reference for applying MSE method to the practical signal quality assessment of mobile ECG.


2021 ◽  
Vol 11 (4) ◽  
pp. 1591
Author(s):  
Ruixia Liu ◽  
Minglei Shu ◽  
Changfang Chen

The electrocardiogram (ECG) is widely used for the diagnosis of heart diseases. However, ECG signals are easily contaminated by different noises. This paper presents efficient denoising and compressed sensing (CS) schemes for ECG signals based on basis pursuit (BP). In the process of signal denoising and reconstruction, the low-pass filtering method and alternating direction method of multipliers (ADMM) optimization algorithm are used. This method introduces dual variables, adds a secondary penalty term, and reduces constraint conditions through alternate optimization to optimize the original variable and the dual variable at the same time. This algorithm is able to remove both baseline wander and Gaussian white noise. The effectiveness of the algorithm is validated through the records of the MIT-BIH arrhythmia database. The simulations show that the proposed ADMM-based method performs better in ECG denoising. Furthermore, this algorithm keeps the details of the ECG signal in reconstruction and achieves higher signal-to-noise ratio (SNR) and smaller mean square error (MSE).


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2448
Author(s):  
Hongbin Lu ◽  
Chuantao Zheng ◽  
Lei Zhang ◽  
Zhiwei Liu ◽  
Fang Song ◽  
...  

The development of an efficient, portable, real-time, and high-precision ammonia (NH3) remote sensor system is of great significance for environmental protection and citizens’ health. We developed a NH3 remote sensor system based on tunable diode laser absorption spectroscopy (TDLAS) technique to measure the NH3 leakage. In order to eliminate the interference of water vapor on NH3 detection, the wavelength-locked wavelength modulation spectroscopy technique was adopted to stabilize the output wavelength of the laser at 6612.7 cm−1, which significantly increased the sampling frequency of the sensor system. To solve the problem in that the light intensity received by the detector keeps changing, the 2f/1f signal processing technique was adopted. The practical application results proved that the 2f/1f signal processing technique had a satisfactory suppression effect on the signal fluctuation caused by distance changing. Using Allan deviation analysis, we determined the stability and limit of detection (LoD). The system could reach a LoD of 16.6 ppm·m at an average time of 2.8 s, and a LoD of 0.5 ppm·m at an optimum averaging time of 778.4 s. Finally, the measurement result of simulated ammonia leakage verified that the ammonia remote sensor system could meet the need for ammonia leakage detection in the industrial production process.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3725
Author(s):  
Paweł Zimroz ◽  
Paweł Trybała ◽  
Adam Wróblewski ◽  
Mateusz Góralczyk ◽  
Jarosław Szrek ◽  
...  

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 858 ◽  
Author(s):  
Timothy A. Vincent ◽  
Yuxin Xing ◽  
Marina Cole ◽  
Julian W. Gardner

A new signal processing technique has been developed for resistive metal oxide (MOX) gas sensors to enable high-bandwidth measurements and enhanced selectivity at PPM levels (<50 PPM VOCs). An embedded micro-heater is thermally pulsed from 225 to 350 °C, which enables the chemical reactions in the sensor film (e.g., SnO2, WO3, NiO) to be extracted using a fast Fourier transform. Signal processing is performed in real-time using a low-cost microcontroller integrated into a sensor module. The approach enables the remove of baseline drift and is resilient to environmental temperature changes. Bench-top experimental results are presented for 50 to 200 ppm of ethanol and CO, which demonstrate our sensor system can be used within a mobile robot.


Author(s):  
Félix Leaman ◽  
Cristián Molina Vicuña ◽  
Elisabeth Clausen

Abstract Background The acoustic emission (AE) analysis has been used increasingly for gearbox diagnostics. Since AE signals are of non-linear, non-stationary and broadband nature, traditional signal processing techniques such as envelope spectrum must be carefully applied to avoid a wrong fault diagnosis. One signal processing technique that has been used to enhance the demodulation process for vibration signals is the empirical mode decomposition (EMD). Until now, the combination of both techniques has not yet been used to improve the fault diagnostics in gearboxes using AE signals. Purpose In this research we explore the use of the EMD to improve the demodulation process of AE signals using the Hilbert transform and enhance the representation of a gear fault in the envelope spectrum. Methods AE signals were measured on a planetary gearbox (PG) with a ring gear fault. A comparative signal analysis was conducted for the envelope spectra of the original AE signals and the obtained intrinsic mode functions (IMFs) considering three types of filters: highpass filter in the whole AE range, bandpass filter based on IMF spectra analysis and bandpass filter based on the fast kurtogram. Results It is demonstrated how the results of the envelope spectrum analysis can be improved by the selection of the relevant frequency band of the IMF most affected by the fault. Moreover, not considering a complementary signal processing technique such as the EMD prior the calculation of the envelope of AE signals can lead to a wrong fault diagnosis in gearboxes. Conclusion The EMD has the potential to reveal frequency bands in AE signals that are most affected by a fault and improve the demodulation process of these signals. Further research shall focus on overcome issues of the EMD technique to enhance its application to AE signals.


Sign in / Sign up

Export Citation Format

Share Document