scholarly journals A Novel Bio-Inspired Deep Learning Approach for Liver Cancer Diagnosis

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 80 ◽  
Author(s):  
Rania M. Ghoniem

Current research on computer-aided diagnosis (CAD) of liver cancer is based on traditional feature engineering methods, which have several drawbacks including redundant features and high computational cost. Recent deep learning models overcome these problems by implicitly capturing intricate structures from large-scale medical image data. However, they are still affected by network hyperparameters and topology. Hence, the state of the art in this area can be further optimized by integrating bio-inspired concepts into deep learning models. This work proposes a novel bio-inspired deep learning approach for optimizing predictive results of liver cancer. This approach contributes to the literature in two ways. Firstly, a novel hybrid segmentation algorithm is proposed to extract liver lesions from computed tomography (CT) images using SegNet network, UNet network, and artificial bee colony optimization (ABC), namely, SegNet-UNet-ABC. This algorithm uses the SegNet for separating liver from the abdominal CT scan, then the UNet is used to extract lesions from the liver. In parallel, the ABC algorithm is hybridized with each network to tune its hyperparameters, as they highly affect the segmentation performance. Secondly, a hybrid algorithm of the LeNet-5 model and ABC algorithm, namely, LeNet-5/ABC, is proposed as feature extractor and classifier of liver lesions. The LeNet-5/ABC algorithm uses the ABC to select the optimal topology for constructing the LeNet-5 network, as network structure affects learning time and classification accuracy. For assessing performance of the two proposed algorithms, comparisons have been made to the state-of-the-art algorithms on liver lesion segmentation and classification. The results reveal that the SegNet-UNet-ABC is superior to other compared algorithms regarding Jaccard index, Dice index, correlation coefficient, and convergence time. Moreover, the LeNet-5/ABC algorithm outperforms other algorithms regarding specificity, F1-score, accuracy, and computational time.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 542
Author(s):  
Muhammad Mateen ◽  
Tauqeer Safdar Malik ◽  
Shaukat Hayat ◽  
Musab Hameed ◽  
Song Sun ◽  
...  

In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely “E-Ophtha” and “DIARETDB1”, and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection.


Author(s):  
Chandradeep Bhatt ◽  
Indrajeet Kumar ◽  
V. Vijayakumar ◽  
Kamred Udham Singh ◽  
Abhishek Kumar

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Paramita Ray ◽  
Amlan Chakrabarti

Social networks have changed the communication patterns significantly. Information available from different social networking sites can be well utilized for the analysis of users opinion. Hence, the organizations would benefit through the development of a platform, which can analyze public sentiments in the social media about their products and services to provide a value addition in their business process. Over the last few years, deep learning is very popular in the areas of image classification, speech recognition, etc. However, research on the use of deep learning method in sentiment analysis is limited. It has been observed that in some cases the existing machine learning methods for sentiment analysis fail to extract some implicit aspects and might not be very useful. Therefore, we propose a deep learning approach for aspect extraction from text and analysis of users sentiment corresponding to the aspect. A seven layer deep convolutional neural network (CNN) is used to tag each aspect in the opinionated sentences. We have combined deep learning approach with a set of rule-based approach to improve the performance of aspect extraction method as well as sentiment scoring method. We have also tried to improve the existing rule-based approach of aspect extraction by aspect categorization with a predefined set of aspect categories using clustering method and compared our proposed method with some of the state-of-the-art methods. It has been observed that the overall accuracy of our proposed method is 0.87 while that of the other state-of-the-art methods like modified rule-based method and CNN are 0.75 and 0.80 respectively. The overall accuracy of our proposed method shows an increment of 7–12% from that of the state-of-the-art methods.


2019 ◽  
Vol 9 (10) ◽  
pp. 2138 ◽  
Author(s):  
Cong Pan ◽  
Minyan Lu ◽  
Biao Xu ◽  
Houleng Gao

To improve software reliability, software defect prediction is used to find software bugs and prioritize testing efforts. Recently, some researchers introduced deep learning models, such as the deep belief network (DBN) and the state-of-the-art convolutional neural network (CNN), and used automatically generated features extracted from abstract syntax trees (ASTs) and deep learning models to improve defect prediction performance. However, the research on the CNN model failed to reveal clear conclusions due to its limited dataset size, insufficiently repeated experiments, and outdated baseline selection. To solve these problems, we built the PROMISE Source Code (PSC) dataset to enlarge the original dataset in the CNN research, which we named the Simplified PROMISE Source Code (SPSC) dataset. Then, we proposed an improved CNN model for within-project defect prediction (WPDP) and compared our results to existing CNN results and an empirical study. Our experiment was based on a 30-repetition holdout validation and a 10 * 10 cross-validation. Experimental results showed that our improved CNN model was comparable to the existing CNN model, and it outperformed the state-of-the-art machine learning models significantly for WPDP. Furthermore, we defined hyperparameter instability and examined the threat and opportunity it presents for deep learning models on defect prediction.


2021 ◽  
Author(s):  
Henrique Varella Ehrenfried ◽  
Eduardo Federal University of Paraná Curitiba, Paraná, Brazil

Deep learning models uses many parameters to work properly. Asthey become more complex, the authors of these novel models cannotexplore in their papers the variation of each parameter of theirmodel. Therefore, this work describes an analysis of the impact offour different parameters (Early Stopping, Learning Rate, Dropout,and Hidden 1) in the TextGCN Model. This evaluation used fourdatasets considered in the original TextGCN publication, obtainingas a side-effect small improvements in the results of three of them.The most relevant conclusion is that these parameters influence theconvergence and accuracy, although they individually do not constitutestrong support when aiming to improve the model’s resultsreported as the state-of-the-art.


Author(s):  
Jiali Yu ◽  
◽  
Zhiliang Qin ◽  
Linghao Lin ◽  
Yu Qin ◽  
...  

In this paper, we focus on the text classification task, which is a most import task in the area of Natural Language Processing (NLP). We propose an innovative convolutional neural network (CNN) model to perform temporal feature aggregation (TFA) effectively, which has a highly representative capacity to extract sequential features from vectorized numerical embeddings. First, we feed embedded vectors into a bi-directional LSTM (Bi-LSTM) model to capture the contextual information of each word. Afterwards, we propose to use the state-of-the-art deep-learning models as key components of the architecture, i.e., the Xception model and the WaveNet model, to extract temporal features from deep convolutional layers concurrently. To facilitate an effective feature fusion, we concatenate the outputs of two component models before forwarding to a drop-out layer to alleviate over-fitting and subsequently a fully-connected dense layer to perform the final classification of input texts. Experiments demonstrate that the proposed method achieves performance comparable to the state-of-the-art models while at a significantly lower computational complexity. Our approach obtains the cross-validation score of 95.83% for the Quora Insincere Question Classification (QIQC) dataset, and the cross-validation score of 83.10% for the Spooky Author Identification (SAI) dataset, respectively, which are among the best published results. The proposed method can be readily generalized to signal processing tasks, e.g., environmental sound classification (ESC) and machine fault analysis (MFA).


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


Sign in / Sign up

Export Citation Format

Share Document