scholarly journals Design and Implementation of an Efficient Rose Leaf Disease Detection using K-Nearest Neighbours

Plants are prone to different diseases caused by multiple reasons like environmental conditions, light, bacteria, and fungus. These diseases always have some physical characteristics on the leaves, stems, and fruit, such as changes in natural appearance, spot, size, etc. Due to similar patterns, distinguishing and identifying category of plant disease is the most challenging task. Therefore, efficient and flawless mechanisms should be discovered earlier so that accurate identification and prevention can be performed to avoid several losses of the entire plant. Therefore, an automated identification system can be a key factor in preventing loss in the cultivation and maintaining high quality of agriculture products. This paper introduces modeling of rose plant leaf disease classification technique using feature extraction process and supervised learning mechanism. The outcome of the proposed study justifies the scope of the proposed system in terms of accuracy towards the classification of different kind of rose plant disease.

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Kaizhou Li ◽  
Jianhui Lin ◽  
Jinrong Liu ◽  
Yandong Zhao

Diseases from Ginkgo biloba have brought great losses to medicine and the economy. Therefore, if the degree of disease can be automatically identified in Ginkgo biloba leaves, people will take appropriate measures to avoid losses in advance. Deep learning has made great achievements in plant disease identification and classification. For this paper, the convolution neural network model was used to classify the different degrees of ginkgo leaf disease. This study used the VGGNet-16 and Inception V3 models. After preprocessing and training 1322 original images under laboratory conditions and 2408 original images under field conditions, 98.44% accuracy was achieved under laboratory conditions and 92.19% under field conditions with the VGG model. The Inception V3 model achieved 92.3% accuracy under laboratory conditions and 93.2% under field conditions. Thus, the Inception V3 model structure was more suitable for field conditions. To our knowledge, there is very little research on the classification of different degrees of the same plant disease. The success of this study will have a significant impact on the prediction and early prevention of ginkgo leaf blight.


Author(s):  
V. K. Shrivastava ◽  
M. K. Pradhan ◽  
S. Minz ◽  
M. P. Thakur

<p><strong>Abstract.</strong> Early and accurate diagnosis of plant diseases is a vital step in the crop protection system. In traditional practices, identification is performed either by visual observation or by testing in laboratory. The visual observation requires expertise and it may vary subject to an individual which may lead to an error while the laboratory test is time consuming and may not be able to provide the results in time. To overcome these issues, image based machine learning approach to detect and classify plant diseases has been presented in literature. We have focused specifically on rice plant (<i>Oryza sativa</i>) disease in this paper. The images of the diseased symptoms in leaves and stems have been captured from the rice field. We have collected a total of 619 rice plant diseased images from the real field condition belong to four classes:(a) Rice Blast (RB), (b) Bacterial Leaf Blight (BLB), (c) Sheat Blight (SB) and (d) Healthy Leave (HL). We have used a pre-trained deep convolutional neural network(CNN) as a feature extractor and Support Vector Machine (SVM) as a classifier. We have obtained encouraging results. The early identification of rice diseases by this approach could be used as a preventive measure well as an early warning system. Further, it could be extended to develop a rice plant disease identification system on real agriculture field.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 98-103
Author(s):  
Gaurav Chopra ◽  
Pawan Whig

India loses thousands of metric tons of tomato crop every year due to pests and diseases. Tomato leaf disease is a major issue that causes significant losses to farmers and possess a threat to the agriculture sector. Understanding how does an algorithm learn to classify different types of tomato leaf disease will help scientist and engineers built accurate models for tomato leaf disease detection. Convolutional neural networks with backpropagation algorithms have achieved great success in diagnosing various plant diseases. However, human benchmarks in diagnosing plant disease have still not been displayed by any computer vision method. Under different conditions, the accuracy of the plant identification system is much lower than expected by algorithms. This study performs analysis on features learned by the backpropagation algorithm and studies the state-of-the-art results achieved by image-based classification methods. The analysis is shown through gradient-based visualization methods. In our analysis, the most descriptive approach to generated attention maps is Grad-CAM. Moreover, it is also shown that using a different learning algorithm than backpropagation is also possible to achieve comparable accuracy to that of deep learning models. Hence, state-of-the-art results might show that Convolutional Neural Network achieves human comparable accuracy in tomato leaf disease classification through supervised learning. But, both genetic algorithms and semi-supervised models hold the potential to built precise systems for tomato leaf detection.


2022 ◽  
pp. 51-77
Author(s):  
Meeradevi ◽  
Monica R. Mundada ◽  
Shilpa M.

Modern technologies have improved their application in field of agriculture in order to improve production. Plant diseases are harmful to plant growth, which leads to reduced quality and quantity of crop. Early identification of plant disease will reduce the loss of the crop productivity. So, it is necessary to identify and diagnose the disease at an early stage before it spreads to the entire field. In this chapter, the proposed model uses VGG16 with attention mechanism for leaf disease classification. This model makes use of convolution neural network which consist of convolution block, max pool layer, and fully connected layer with softmax as an activation function. The proposed approach integrates CNN with attention mechanism to focus more on the diseased part of leaf and increase the classification accuracy. The proposed model design is a novel deep learning model to perform the fine tuning in the classification of nine different type of tomato plant disease.


Author(s):  
V. T. Krishnaprasath ◽  
J. Preethi

In this modern era, the detection of plant disease plays a vital role in the sustainability of agricultural ecosystem. Today, India being second in farming, well-timed information related to crop is still questioning. Indian Government's farmer portal is available for pesticides, fertilisers, and farm machinery. To alleviate this problem, the paper describes a model to validate the leaf image, predicting leaf disease and notifying the farmer in an effective way on the harvest failure to stabilise farming income. For specific consideration on the validation, a data set library with predefined, uniformly scaled, regular image patterns of leaf disease, is maintained. The research suggests that farmers utilising the model can predict the breakout of leaf disease predominantly acquiring 100% yield.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 707
Author(s):  
Jinzhu Lu ◽  
Lijuan Tan ◽  
Huanyu Jiang

Crop production can be greatly reduced due to various diseases, which seriously endangers food security. Thus, detecting plant diseases accurately is necessary and urgent. Traditional classification methods, such as naked-eye observation and laboratory tests, have many limitations, such as being time consuming and subjective. Currently, deep learning (DL) methods, especially those based on convolutional neural network (CNN), have gained widespread application in plant disease classification. They have solved or partially solved the problems of traditional classification methods and represent state-of-the-art technology in this field. In this work, we reviewed the latest CNN networks pertinent to plant leaf disease classification. We summarized DL principles involved in plant disease classification. Additionally, we summarized the main problems and corresponding solutions of CNN used for plant disease classification. Furthermore, we discussed the future development direction in plant disease classification.


2021 ◽  
Vol 11 (10) ◽  
pp. 4614
Author(s):  
Xiaofei Chao ◽  
Xiao Hu ◽  
Jingze Feng ◽  
Zhao Zhang ◽  
Meili Wang ◽  
...  

The fast and accurate identification of apple leaf diseases is beneficial for disease control and management of apple orchards. An improved network for apple leaf disease classification and a lightweight model for mobile terminal usage was designed in this paper. First, we proposed SE-DEEP block to fuse the Squeeze-and-Excitation (SE) module with the Xception network to get the SE_Xception network, where the SE module is inserted between the depth-wise convolution and point-wise convolution of the depth-wise separable convolution layer. Therefore, the feature channels from the lower layers could be directly weighted, which made the model more sensitive to the principal features of the classification task. Second, we designed a lightweight network, named SE_miniXception, by reducing the depth and width of SE_Xception. Experimental results show that the average classification accuracy of SE_Xception is 99.40%, which is 1.99% higher than Xception. The average classification accuracy of SE_miniXception is 97.01%, which is 1.60% and 1.22% higher than MobileNetV1 and ShuffleNet, respectively, while its number of parameters is less than those of MobileNet and ShuffleNet. The minimized network decreases the memory usage and FLOPs, and accelerates the recognition speed from 15 to 7 milliseconds per image. Our proposed SE-DEEP block provides a choice for improving network accuracy and our network compression scheme provides ideas to lightweight existing networks.


Sign in / Sign up

Export Citation Format

Share Document