scholarly journals A Phrase-Level User Requests Mining Approach in Mobile Application Reviews: Concept, Framework, and Operation

Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 177
Author(s):  
Cheng Yang ◽  
Lingang Wu ◽  
Chunyang Yu ◽  
Yuliang Zhou

Mobile application (app) reviews are feedback about experiences, requirements, and issues raised after users have used the app. The iteration of an app is driven by bug reports and user requirements analyzed and extracted from app reviews, which is a problem that app designers and developers are committed to solving. However, a great number of app reviews vary in quality and reliability. It is a difficult and time-consuming challenge to analyze app reviews using manual methods. To address this, a novel approach is proposed as an automated method to predict high priority user requests with fourteen extracted features. A semi-automated approach is applied to annotate requirements with high or low priority with the help of app changelogs. Reviews from six apps were retrieved from the Apple App Store to evaluate the feasibility of the approach and interpret the principles. The performance comparison results of the approach greatly exceed the IDEA method, with an average precision of 75.4% and recall of 70.4%. Our approach can be applied to specific app development to assist app developers in quickly locating user requirements and implement app maintenance and evolution.

Author(s):  
Faried Effendy ◽  
Taufik ◽  
Bramantyo Adhilaksono

: Substantial research has been conducted to compare web servers or to compare databases, but very limited research combines the two. Node.js and Golang (Go) are popular platforms for both web and mobile application back-ends, whereas MySQL and Go are among the best open source databases with different characters. Using MySQL and MongoDB as databases, this study aims to compare the performance of Go and Node.js as web applications back-end regarding response time, CPU utilization, and memory usage. To simulate the actual web server workload, the flow of data traffic on the server follows the Poisson distribution. The result shows that the combination of Go and MySQL is superior in CPU utilization and memory usage, while the Node.js and MySQL combination is superior in response time.


Author(s):  
Angela Peterzol ◽  
Bruno Bader ◽  
Julien Banchet ◽  
Claire Caperaa ◽  
Vivian Didier

Computed radiography (CR) is a digital radiographic technique, which uses very similar equipment to conventional radiography except that in place of a film to create the latent image, an imaging plate (IP) made of a photostimulable phosphor is used [1]. CR systems are commonly used in medical applications since they have proven reliability over more than two decades. Conversely, the NDT community has discussed the efficacy of film replacement by CR for more than 15 years. Though some standards were introduced in 2005 (ASTM E 2033, CEN EN 14784-2) and others are on the way (PR ISO 17636-2), CR is actually not included within the French RCCM, while the technique is commonly used in US for nuclear applications according to ASME (Section V, article 2). Since 2006, AREVA has been evaluating the performance of CR in comparison to conventional RT in the framework of EN 14784 for the digital part and the RCCM for the conventional part. The objective was to build a technical justification report to eventually support introduction of CR into the RCCM. In 2009 the subject gave rise to collaboration between AREVA NP – NETEC and EDF-CEIDRE, for a joint project to establish performance limits of CR towards EN 14784 specifications and RCCM image quality indicator (IQI) requirements [2]. In this paper, we present performance comparison results of four different CR systems. The measurements were conducted in 2012 and they demonstrate the current state of achievable image quality in CR. The performance has been evaluated for steel with a thickness range of 20÷60 mm using an Iridium 192 gamma source. Image quality has been assessed in terms of EN 462 and ASTM (E 747, E 1742) IQI. The results have been scored considering the PR ISO 17636-2, RCCM 2007, and ASME V-2010. This also permitted comparison among the different standard requirements.


2021 ◽  
Vol 13 (2) ◽  
pp. 62-84
Author(s):  
Boudjemaa Boudaa ◽  
Djamila Figuir ◽  
Slimane Hammoudi ◽  
Sidi mohamed Benslimane

Collaborative and content-based recommender systems are widely employed in several activity domains helping users in finding relevant products and services (i.e., items). However, with the increasing features of items, the users are getting more demanding in their requirements, and these recommender systems are becoming not able to be efficient for this purpose. Built on knowledge bases about users and items, constraint-based recommender systems (CBRSs) come to meet the complex user requirements. Nevertheless, this kind of recommender systems witnesses a rarity in research and remains underutilised, essentially due to difficulties in knowledge acquisition and/or in their software engineering. This paper details a generic software architecture for the CBRSs development. Accordingly, a prototype mobile application called DATAtourist has been realized using DATAtourisme ontology as a recent real-world knowledge source in tourism. The DATAtourist evaluation under varied usage scenarios has demonstrated its usability and reliability to recommend personalized touristic points of interest.


Author(s):  
Thomas Weise ◽  
Yan Jiang ◽  
Qi Qi ◽  
Weichen Liu

In this article, the new crossover operator BBX for Evolutionary Algorithms (EAs) for traveling salesman problems (TSPs) is introduced. It uses branch-and-bound to find the optimal combination of the (directed) edges present in the parent solutions. The offspring solutions created are at least as good as their parents and are only composed of parental building blocks. The operator is closer to the ideal concept of crossover in EAs than existing operators. This article provides the most extensive study on crossover operators on the TSP, comparing BBX to ten other operators on the 110 instances of the TSPLib benchmark set in EAs with four different population sizes. BBX, with its better ability to reuse and combine building blocks, surprisingly does not generally outperform the other operators. However, it performs well in certain scenarios. Besides presenting a novel approach to crossover on the TSP, the study significantly extends and refines the body of knowledge on the field with new conclusions and comparison results.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040008
Author(s):  
J. E. LAVÍN-DELGADO ◽  
S. CHÁVEZ-VÁZQUEZ ◽  
J. F. GÓMEZ-AGUILAR ◽  
G. DELGADO-REYES ◽  
M. A. RUÍZ-JAIMES

In this paper, a novel fractional-order control strategy for the SCARA robot is developed. The proposed control is composed of [Formula: see text] and a fractional-order passivity-based adaptive controller, based on the Caputo–Fabrizio and Atangana–Baleanu derivatives, respectively; both controls are robust to external disturbances and change in the desired trajectory and effectively enhance the performance of robot manipulator. The fractional-order dynamic model of the robot manipulator is obtained by using the Euler–Lagrange formalism, as well as the model of the induction motors which are the actuators that drive their joints. Through simulations results, the effectiveness and robustness of the proposed control strategy have been demonstrated. The performance of the fractional-order proposed control method is compared with its integer-order counterpart, composed of the PI controller and the conventional passivity-based adaptive controller, reported in the literature. The performance comparison results demonstrate the superiority and effectiveness of the fractional-order proposed control strategy for a SCARA robot manipulator.


2015 ◽  
Vol 7 (3) ◽  
pp. 18-44 ◽  
Author(s):  
Soumia Bendakir ◽  
Nacereddine Zarour ◽  
Pierre Jean Charrel

Requirements change management (RCM) is actually an inevitable task that might be considered in system development's life cycle, since user requirements are continuously evolving (some are added, others are modified or deleted). A large majority of studies have examined the issue of change, while most of them focused on the design and source code, requirements were often forgotten, even though, the cost of fixing the defect and introduced error due to the requirements is less higher compared to the cost of error in design and implementation. For this purpose, this work focuses on change issues in the requirements engineering (RE) context, which contains the complete initial specification. Properties such as adaptability, perception, and cooperation of the multi-agent system (MAS) allow managing changing requirements in a controlled manner. The main objective of this work is to develop an agent-oriented approach which will be effective in the requirements management to be adapted to changes in their environments.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 771-780 ◽  
Author(s):  
A. Meghdari ◽  
R. Karimi ◽  
H. N. Pishkenari ◽  
A. L. Gaskarimahalle ◽  
S. H. Mahboobi

In this paper a novel approach to dynamic formulation of rovers has been presented. The complexity of these multi-body systems especially on rough terrain, challenged us to use the Kane's method which has been preferred to others in these cases. As an example, symbolic equations of a six-wheeled rover, named CEDRA Rescue Robot which uses a shrimp like mechanism, have been derived and a simulation of forward and inverse dynamics has been presented. Due to the clear form of equations, each term defines a physical meaning which represents the effect of each parameter, resulting in a frame-work for performance comparison of rovers. Although the method has been described for a 2-D non-slipping case, it is also very useful for dimensional and dynamical optimization, high speed motion analysis, and checking various control algorithms. Furthermore, it can be extended to 3-D cases and other complicated mechanisms and rovers while conserving its inherent benefits and adding to the ease of handling nonholonomic constraints.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yan He ◽  
Fan Yang ◽  
Yunli Yu ◽  
Celso Grebogi

As a brain disorder, epilepsy is characterized with abnormal hypersynchronous neural firings. It is known that seizures initiate and propagate in different brain regions. Long-term intracranial multichannel electroencephalography (EEG) reflects broadband ictal activity under seizure occurrence. Network-based techniques are efficient in discovering brain dynamics and offering finger-print features for specific individuals. In this study, we adopt link prediction for proposing a novel workflow aiming to quantify seizure dynamics and uncover pathological mechanisms of epilepsy. A dataset of EEG signals was enrolled that recorded from 8 patients with 3 different types of pharmocoresistant focal epilepsy. Weighted networks are obtained from phase locking value (PLV) in subband EEG oscillations. Common neighbor (CN), resource allocation (RA), Adamic-Adar (AA), and Sorenson algorithms are brought in for link prediction performance comparison. Results demonstrate that RA outperforms its rivals. Similarity, matrix was produced from the RA technique performing on EEG networks later. Nodes are gathered to form sequences by selecting the ones with the highest similarity. It is demonstrated that variations are in accordance with seizure attack in node sequences of gamma band EEG oscillations. What is more, variations in node sequences monitor the total seizure journey including its initiation and termination.


2020 ◽  
Vol 30 (2) ◽  
pp. 278-286
Author(s):  
Agnieszka Ćwiklińska ◽  
Barbara Kortas-Stempak ◽  
Maciej Jankowski ◽  
Gabriela Bednarczuk ◽  
Aleksandra Fijałkowska ◽  
...  

Introduction: Urine particle analysis is an important diagnostic tool. The aim of this study was to evaluate the quality of urine leukocyte (WBC) and erythrocyte (RBC) counting results obtained with manual and automated methods in Polish laboratories participating in the international external quality assessment (EQA) programme. Materials and methods: 1400 WBC and RBC counting results were obtained from 183 laboratories in EQA surveys organised by Labquality (Helsinki, Finland) from 2017 to 2019. The between-laboratory coefficient of variation (CV), the percentage difference between the laboratories' results and target values (Q-score (%)), as well as modified Youden plots were analysed. Results: For automated method groups, the medians of inter-laboratory CVs varied from 14% to 33% for WBC counting and from 10% to 39% for RBC counting. For manual method groups, the medians of CV varied from 53% to 71% (WBC) and from 55% to 70% (RBC), and they were significantly higher, in comparison to CVs for most automated method groups (P < 0.001). The highest percentage of results outside the target limits (36%) and the highest range of Q-score (%) (from - 93% to 706%) were observed for laboratories which participated in the surveys for the first or second time. The percentage of deviating results and the ranges of Q-score decreased with an increased frequency of laboratories’ participation in the surveys. Conclusions: The quality of manual methods of urine WBC and RBC counting is unsatisfactory. There is an urgent need to take actions to improve laboratories’ performance and to increase harmonisation of the results.


2021 ◽  
Author(s):  
Natalie C Fisher ◽  
Maurice B Loughrey ◽  
Helen G Coleman ◽  
Melvin D Gelbard ◽  
Peter Bankhead ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document