scholarly journals Effect of Water Drawdown and Dynamic Loads on Piled Raft: Two-Dimensional Finite Element Approach

2019 ◽  
Vol 4 (4) ◽  
pp. 75 ◽  
Author(s):  
Naveen Kumar Meena ◽  
Sanjay Nimbalkar

The piled raft foundations are widely used in infrastructure built on soft soil to reduce the settlement and enhance the bearing capacity. However, these foundations pose a potential risk of failure, if dynamic traffic loading and ground conditions are not adequately accounted in the construction phase. The ground conditions are complex because of frequent groundwater fluctuations. The drawdown of the water table profoundly influences the settlement and load sharing capacity of piled raft foundation. Further, the dynamic loading can also pose a potential risk to these foundations. In this paper, the two-dimensional finite element method (FEM) is employed to analyze the impact of water drawdown and dynamic loading on the stability of piled raft. The seismic response of piled raft is also discussed. The stresses and deformations occurring in and around the raft structure are evaluated. The results demonstrate that water drawdown has a significant effect on the stability and seismic response of piled raft. Various foundation improvement methods are assessed, such as the use of geotextile and increasing thickness of the pile cap, which aids of limiting the settlement.

1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


2018 ◽  
Vol 7 (4) ◽  
pp. 2481
Author(s):  
Dimitrios K. Baros ◽  
Angeliki Papalou

Ancient temples consisting of classical columns have been exposed through the years to dynamic loads with sometimes detrimental effects. Predicting their dynamic behavior is important for their restoration and preservation. This paper analyzes the behavior of classical columns under dynamic loading using simplified two-dimensional finite element models. The adequacy of these models for the prediction of the dynamic behavior of classical columns is verified comparing the numerical results with experimental measurements. The most important parameters that influence the model’s behavior are identified. The behavior of classical columns can be predicted in the direction of excitation with reasonable accuracy using two-dimensional finite element models when the properties of the models are selected appropriately.  


Author(s):  
L F Campanile ◽  
R Jähne ◽  
A Hasse

Classical beam models do not account for partial restraint of anticlastic bending and are therefore inherently inaccurate. This article proposes a modification of the exact Bernoulli–Euler equation which allows for an exact prediction of the beam's deflection without the need of two-dimensional finite element calculations. This approach offers a substantial reduction in the computational effort, especially when coupled with a fast-solving schema like the circle-arc method. Besides the description of the new method and its validation, this article offers an insight into the somewhat disregarded topic of anticlastic bending by a short review of the published theories and a selection of representative numerical results.


Sign in / Sign up

Export Citation Format

Share Document