scholarly journals Pyridinesilver Tetraoxometallate Complexes: Overview of the Synthesis, Structure, and Properties of Pyridine Complexed AgXO4 (X = Cl, Mn, Re) Compounds

Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 79
Author(s):  
Fernanda Paiva Franguelli ◽  
Kende Attila Béres ◽  
Laszló Kótai

We reviewed the synthesis, structure, and properties of pyridine complexes of AgXO4 (X = Cl, Mn, and Re) compounds with various compositions ([AgPy2] XO4, [AgPy2XO4]·0.5Py, [AgPy4] XO4, and 4 [AgPy2XO4] [AgPy4] XO4). We also clarified the controversial information about the existence and composition of pyridine complexes of silver permanganate, used widely as mild and selective oxidants in organic chemistry. We discussed in detail the available structural and spectroscopic (IR, Raman, and UV) data and thermal behavior, including the existence and consequence of quasi-intramolecular reactions between the reducing ligand and anions containing oxygen.

1989 ◽  
Vol 171 ◽  
Author(s):  
Robert Kosfeld ◽  
Frank Schubert ◽  
Michael Hess ◽  
Witold Brostow

ABSTRACTThe investigation of the thermal behavior of polymer blends leads to phase diagrams which involve Important information about the system. From these diagrams, equilibrium as well as non-equilibrium phases can be deduced and ranges of miscibility or partial miscibility of the polymers become obvious. Hence the diagrams are of a great value for processing of advanced polymer blends, especially If a polyphasic polymers such as a polymer liquid crystal is one of the constituents of the system.


2018 ◽  
Vol 6 (11) ◽  
pp. 4759-4767 ◽  
Author(s):  
Jian Wang ◽  
Lin-Lin Wang ◽  
Kirill Kovnir

Low-energy rattling of potassium cations in open channels of Mg–Sb framework causes a Phonon-Glass thermal behavior of novel antimonide KMg4Sb3.


2016 ◽  
Vol 17 (2) ◽  
pp. 365-380 ◽  
Author(s):  
Sonia M. Underwood ◽  
David Reyes-Gastelum ◽  
Melanie M. Cooper

The ability to use a chemical structure to predict and explain phenomenon is essential to a robust understanding of chemistry; however, previous research has shown that students find it difficult to make the connection between structure and properties. In this study we examine how student recognition of the connections between structure and properties evolves during the first two years of college chemistry courses. In addition, we investigate how an alternative general chemistry curriculum (Chemistry, Life, the Universe and Everything (CLUE)) impacts students' understanding during these first two-years. Using discrete-time survival analysis to analyze student responses to the Implicit Information from Lewis Structures Instrument (IILSI), we found that it takes multiple semesters for students enrolled in a traditional curriculum to recognize that chemical structures can be used as models to predict chemical and physical properties. Students in the CLUE curriculum, however, tend to make this connection earlier than a matched cohort of students from a traditional curriculum, and this advantage is maintained throughout the two semesters of organic chemistry. In general, the control group takes an additional year of organic chemistry to reach the same level as the CLUE students after a year of general chemistry.


Author(s):  
Ernest L. Hall ◽  
Shyh-Chin Huang

Addition of interstitial elements to γ-TiAl alloys is currently being explored as a method for improving the properties of these alloys. Previous work in which a number of interstitial elements were studied showed that boron was particularly effective in refining the grain size in castings, and led to enhanced strength while maintaining reasonable ductility. Other investigators have shown that B in γ-TiAl alloys tends to promote the formation of TiB2 as a second phase. In this study, the microstructure of Bcontaining TiAl alloys was examined in detail in order to describe the mechanism by which B alters the structure and properties of these alloys.


Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Sign in / Sign up

Export Citation Format

Share Document