scholarly journals Low Genetic Variability in Bemisia tabaci MEAM1 Populations within Farmscapes of Georgia, USA

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 834 ◽  
Author(s):  
Saurabh Gautam ◽  
Michael S. Crossley ◽  
Bhabesh Dutta ◽  
Timothy Coolong ◽  
Alvin M. Simmons ◽  
...  

Bemisia tabaci is a whitefly species complex comprising important phloem feeding insect pests and plant virus vectors of many agricultural crops. Middle East–Asia Minor 1 (MEAM1) and Mediterranean (MED) are the two most invasive members of the B. tabaci species complex worldwide. The diversity of agroecosystems invaded by B. tabaci could potentially influence their population structure, but this has not been assessed at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning ~8 square kilometers. In this study, mitochondrial COI gene (mtCOI) sequences and six microsatellite markers were used to examine the population structure of B. tabaci MEAM1 colonizing different plant species at a farmscape level in Georgia, United States. Thirty-five populations of adult whiteflies on row and vegetable crops and weeds across major agricultural regions of Georgia were collected from fifteen farmscapes. Based on morphological features and mtCOI sequences, five species/cryptic species of whiteflies (B. tabaci MEAM1, B. tabaci MED, Dialeurodes citri, Trialeurodes abutiloneus, T. vaporariorum) were found. Analysis of 102 mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes in Georgia. Population genetics analyses (AMOVA, PCA and STRUCTURE) of B. tabaci MEAM1 (microsatellite data) revealed only minimal genetic differences among collected populations within and among farmscapes. Overall, our results suggest that there is a high level of gene flow among B. tabaci MEAM1 populations among farmscapes in Georgia. Frequent whitefly population explosions driven by a single or a few major whitefly-suitable hosts planted on a wide spatial scale may be the key factor behind the persistence of a single panmictic population over Georgia’s farmscapes. These population structuring effects are useful for delineating the spatial scale at which whiteflies must be managed and predicting the speed at which alleles associated with insecticide resistance might spread.

Author(s):  
Alex J. Veglia ◽  
Nicholas M. Hammerman ◽  
Carlos R. Rivera Rosaly ◽  
Matthew Q. Lucas ◽  
Alexandra Galindo Estronza ◽  
...  

Symbiotic relationships are a common phenomenon among marine invertebrates, forming both obligatory and facultative dependencies with their host. Here, we investigate and compare the population structure of two crustacean species associated with both shallow and mesophotic ecosystems: an obligate symbiont barnacle (Ceratoconcha domingensis), of the coral Agaricia lamarcki and a meiobenthic, free-living harpacticoid copepod (Laophontella armata). Molecular analyses of the Cytochrome Oxidase Subunit I (COI) gene revealed no population structure between mesophotic and shallow barnacle populations within south-west Puerto Rico (ΦST = 0.0079, P = 0.33). The absence of population structure was expected due to the pelagic naupliar larvae of the barnacles and the connectivity patterns exhibited by the coral itself within the same region. Laophontella armata exhibited significant structure based on the mitochondrial COI gene between the mesophotic reef ecosystem of El Seco, Puerto Rico and mangrove sediments of Curaçao (ΦST = 0.2804, P = 0.0). The El Seco and Curaçao copepods shared three COI haplotypes despite the obligatory benthic development of harpacticoid copepods and the geographic distance between the two locations. Three other COI haplotypes from El Seco exhibited higher than expected (up to 7%) intra-species variability, potentially representing three new cryptic species of harpacticoid copepods or rare, deeply divergent lineages of L. armata. This result is evidence for the urgent need of a deeper investigation into the meiofauna diversity associated with mesophotic coral ecosystems (MCEs), arguably the most diverse metazoan component of MCEs.


2005 ◽  
Vol 95 (1) ◽  
pp. 29-35 ◽  
Author(s):  
H. Delatte ◽  
B. Reynaud ◽  
M. Granier ◽  
L. Thornary ◽  
J.M. Lett ◽  
...  

AbstractFollowing the first detection of tomato yellow leaf curl virus (TYLCV) from R=union (700 km east of Madagascar) in 1997 and the upsurge of Bemisia tabaci (Gennadius) on vegetable crops, two genetic types of B. tabaci were distinguished using RAPD–PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms, after the Mascarenes Archipelago. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and one to which the Q biotype belongs. The Ms biotype is thought to be indigenous to the region as it was also detected in Mauritius, the Seychelles and Madagascar. Both B and Ms populations of B. tabaci induced silverleaf symptoms on Cucurbita sp., and were able to acquire and transmit TYLCV. Taken together these results indicate that the Ms genetic type should be considered a new biotype of B. tabaci.


2021 ◽  
Author(s):  
Andrew Cuthbertson

Abstract The exact origin of the MED species of Bemisia tabaci, and the reasons why it became such an important pest are still not fully known. MED species has been identified as a distinct member within the B. tabaci species complex (Tay et al., 2012). MED species is also an effective vector of many different plant viruses which, in conjunction with its high level of polyphagy, make it extremely problematic within agricultural regions where crops may be susceptible to viruses acquired from indigenous plants. Despite Bemisia in general being a tropical/sub-tropical whitefly species, MED species can easily be transported on plant species to temperate regions of the world (Cuthbertson and Vänninen, 2015). Within these cooler regions, MED species can survive within a protected environment and could feasibly spread virus diseases to new locations. It is for this reason that B. tabaci and members of its species complex, including MED species are on EPPO A2 Alert list.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 198
Author(s):  
Yinping Li ◽  
George N. Mbata ◽  
Somashekhar Punnuri ◽  
Alvin M. Simmons ◽  
David I. Shapiro-Ilan

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is among the most economically important insect pests of various vegetable crops in the Southern United States. This insect is considered a complex of at least 40 morphologically indistinguishable cryptic species. Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) was initially introduced in the United States around 1985 and has since rapidly spread across the Southern United States to Texas, Arizona, and California, where extreme field outbreaks have occurred on vegetable and other crops. This pest creates extensive plant damage through direct feeding on vegetables, secreting honeydew, causing plant physiological disorders, and vectoring plant viruses. The direct and indirect plant damage in vegetable crops has resulted in enormous economic losses in the Southern United States, especially in Florida, Georgia, and Texas. Effective management of B. tabaci on vegetables relies mainly on the utilization of chemical insecticides, particularly neonicotinoids. However, B. tabaci has developed considerable resistance to most insecticides. Therefore, alternative integrated pest management (IPM) strategies are required, such as cultural control by manipulation of production practices, resistant vegetable varieties, and biological control using a suite of natural enemies for the management of the pest.


2010 ◽  
Vol 103 (6) ◽  
pp. 2204-2213 ◽  
Author(s):  
Ming-Long Yuan ◽  
Dan-Dan Wei ◽  
Kun Zhang ◽  
Yu-Zhen Gao ◽  
Yong-Hua Liu ◽  
...  

Author(s):  
Lin Zhu ◽  
Huiluo Cao ◽  
Hongwei Chen

A new species complex, the eparmata complex, is established within the subgenus Phortica s. str., based on eight known and five new species, all of which are endemic to the Oriental Region: P. bipartita (Toda & Peng, 1992), P. eparmata (Okada, 1977), P. lanuginosa Chen & Toda, 2007, P. latipenis Chen & Gao, 2005, P. pangi Chen & Wen, 2005, P. setitabula Chen & Gao, 2005, P. unipetala Chen & Wen, 2005 and P. zeta Chen & Toda, 2007; P. jadete sp. nov., P. kava sp. nov., P. mengda sp. nov., P. wongding sp. nov. and P. yena sp. nov. A key to all species of this complex is provided. Barcoding sequences (mitochondrial COI gene) were obtained for 22 specimens of five known and the five above-mentioned new species. The intra- and inter-specific pairwise K-2P (Kimura’s two-parameter) distances of COI were determined. Phylogenetic analysis was performed using Bayesian inference based on COI sequences, confirming the monophyletic status of the eparmata complex, which is distinct from the species complexes of magna, omega, variegata and another two ungrouped species


Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Aicha Gharbi ◽  
Noureddine Chatti ◽  
Khaled Said ◽  
Alain Wormhoudt

AbstractSurveys of allozyme polymorphisms in the carpet shell clam Ruditapes decussatus have revealed sharp genetic differentiation of populations. Analysis of population structure in this species has now been extended to include nuclear and mitochondrial genes. A partial sequence of a mitochondrial COI gene and of the internal transcribed spacer region (ITS-1) were used to study haplotype distribution, the pattern of gene flow, and population genetic structure of R. decussatus. The samples were collected from twelve populations from the eastern and western Mediterranean coasts of Tunisia, one from Concarneau and one from Thau. A total of twenty and twenty-one haplotypes were detected in the examined COI and ITS1 regions respectively. The study revealed higher levels of genetic diversity for ITS1 compared to COI. The analysis of haplotype frequency distribution and molecular variation indicated that the majority of the genetic variation was distributed within populations (93% and 86% for COI and ITS1 respectively). No significant differentiation was found among eastern and western groups on either side of the Siculo-Tunisian strait. However, distinct and significant clinal changes in haplotypes frequencies between eastern and western samples were found at the most frequent COI haplotype and at three out of five major ITS1 haplotypes. These results suggest the relative importance of historical processes and contemporary hydrodynamic features on the observed patterns of genetic structure.


Sign in / Sign up

Export Citation Format

Share Document