A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean

2005 ◽  
Vol 95 (1) ◽  
pp. 29-35 ◽  
Author(s):  
H. Delatte ◽  
B. Reynaud ◽  
M. Granier ◽  
L. Thornary ◽  
J.M. Lett ◽  
...  

AbstractFollowing the first detection of tomato yellow leaf curl virus (TYLCV) from R=union (700 km east of Madagascar) in 1997 and the upsurge of Bemisia tabaci (Gennadius) on vegetable crops, two genetic types of B. tabaci were distinguished using RAPD–PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms, after the Mascarenes Archipelago. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and one to which the Q biotype belongs. The Ms biotype is thought to be indigenous to the region as it was also detected in Mauritius, the Seychelles and Madagascar. Both B and Ms populations of B. tabaci induced silverleaf symptoms on Cucurbita sp., and were able to acquire and transmit TYLCV. Taken together these results indicate that the Ms genetic type should be considered a new biotype of B. tabaci.

2013 ◽  
Vol 2 (2) ◽  
pp. 102-120
Author(s):  
Suresh P. Tiwari ◽  
Sushma Nema ◽  
Mahendra N. Khare

Bemisia tabaci transmit 111 viruses. The silver leaf/sweet potato whitefly prefers 25°C to 30°C for development and rapid generation time while the greenhouse whitefly prefers temperatures of 20°C to 25°C. Eggs hatch in eight to 10 days. Resistance in B- and Q-biotype of B. tabaci appears to be linked to enhanced oxidative detoxification of neonicotinoids. Transmission efficiency from infected weeds to tomato varied from 66.7 to 100 percent, whereas, from tomato to these weeds varied from 58.3 to 83.3 percent. Increased mortality of biotype Q females and immature instars with lower rate of fecundity and progeny size compared to biotype B was recorded in such population when reared in single or mixed cultures. Two genetic types of B. tabaci were distinguished using RAPD-PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and Q bioype have  similar values of intra population diversity, which were higher than the values shown by populations of biotype B. Epidemics of begomoviruses have been observed in many crops including tomato for which Tomato yellow leaf curl China virus (TYLCCNV) and Tomato yellow leaf curl virus (TYLCV) have been identified as two major disease-causing agents. The replication of geminiviruses induces micro-structural changes in the nucleus of the host cells. The begomovirus vector B.  tabaci is  an  insect species  complex  that  has  geographically  distinct phenotypic and genotypic variants. Criniviruses are limited to phloem and are transmitted in nature in a semipersistent manner by whiteflies. The genus Ipomovirus includes viruses that are transmitted by the whitefly B. tabaci in a semipersistent manner. Virus particles occur in the cytoplasm singly or more often in large aggregates which are sometimes banded. The stem necrosis of soybean is caused by a virus of the Carlavirus and transmitted by the whitefly Bemisia tabaci, also infected beans and identified as Cowpea mild mottle virus. The early symptoms of Tomato torrado virus are necrotic or dead spots, surrounded by a light green or yellow area at the base of the leaflets. The affected areas may fall out, leaving holes (shot holes) in the leaflets. Necrosis and mottling extend to the remainder of the leaves. The article will bring role of whitefly in development of virus diseases in agricultural crops and management strategies could only be achieved when importance of this pest will be eradicated with non-chemical approach.


2011 ◽  
Vol 8 (1) ◽  
pp. 1-7
Author(s):  
Purnama Hidayat ◽  
Noor Aidawati ◽  
Sri Hendrastuti Hidayat ◽  
Dewi Sartiami

Indicator Plant and PCR-RAPD for Biotype Determination of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae).B. tabaci has been known world wide as a major pest and virus vector of horticulture. In Indonesia the presence of B.tabaci was reported since 1980 and its role as virus vector in tomato and chilli pepper has becoming more importantrecently. Genetic diversity of B. tabaci has been well recognized, but very little information available for diversity of B.tabaci in Indonesia. This research was conducted in Bogor, West Java from May 2004 to June 2005. The aim of thisresearch was to initiate basic information regarding genetic diversity of B. tabaci in Indonesia, particularly in Java Island.Whiteflies population collected from different crops, i.e. tomato, broccoli, chill pepper, eggplant, cucumber, soybean, andedamame, was evaluated using silverleaf-induction test, and RAPD-PCR. It was evidenced that only B. tabaci populationfrom broccoli was able to induce silverleaf. Two genetic types of B. tabaci, i.e. biotype B and non B, were identified basedon polymorphism character of DNA. Population from broccoli was belong to biotype B, whereas other populations fromtomato, chill pepper, eggplant, cucumber, soybean, and edamame were belong to biotype non B.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 834 ◽  
Author(s):  
Saurabh Gautam ◽  
Michael S. Crossley ◽  
Bhabesh Dutta ◽  
Timothy Coolong ◽  
Alvin M. Simmons ◽  
...  

Bemisia tabaci is a whitefly species complex comprising important phloem feeding insect pests and plant virus vectors of many agricultural crops. Middle East–Asia Minor 1 (MEAM1) and Mediterranean (MED) are the two most invasive members of the B. tabaci species complex worldwide. The diversity of agroecosystems invaded by B. tabaci could potentially influence their population structure, but this has not been assessed at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning ~8 square kilometers. In this study, mitochondrial COI gene (mtCOI) sequences and six microsatellite markers were used to examine the population structure of B. tabaci MEAM1 colonizing different plant species at a farmscape level in Georgia, United States. Thirty-five populations of adult whiteflies on row and vegetable crops and weeds across major agricultural regions of Georgia were collected from fifteen farmscapes. Based on morphological features and mtCOI sequences, five species/cryptic species of whiteflies (B. tabaci MEAM1, B. tabaci MED, Dialeurodes citri, Trialeurodes abutiloneus, T. vaporariorum) were found. Analysis of 102 mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes in Georgia. Population genetics analyses (AMOVA, PCA and STRUCTURE) of B. tabaci MEAM1 (microsatellite data) revealed only minimal genetic differences among collected populations within and among farmscapes. Overall, our results suggest that there is a high level of gene flow among B. tabaci MEAM1 populations among farmscapes in Georgia. Frequent whitefly population explosions driven by a single or a few major whitefly-suitable hosts planted on a wide spatial scale may be the key factor behind the persistence of a single panmictic population over Georgia’s farmscapes. These population structuring effects are useful for delineating the spatial scale at which whiteflies must be managed and predicting the speed at which alleles associated with insecticide resistance might spread.


2020 ◽  
Vol 110 (4) ◽  
pp. 487-496 ◽  
Author(s):  
Vinicius Henrique Bello ◽  
Luís Fernando Maranho Watanabe ◽  
Lucas Machado Fusco ◽  
Bruno Rossitto De Marchi ◽  
Felipe Barreto da Silva ◽  
...  

AbstractThe whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most important agricultural pests and virus vectors worldwide. Bemisia tabaci is considered a complex of cryptic species with at least 44 species. Among them, the species Middle East-Asia Minor 1 (MEAM1, formerly B biotype) and Mediterranean (MED, formerly Q biotype) are the most important, and they have attained global status. In Brazil, MEAM1 was first reported in the 1990s and is currently the predominant species in the country, meanwhile, MED was recently reported in the South and Southeast regions and was found to be mainly associated with ornamental plants. Currently, an increasing problem in the management of whitefly infestations in greenhouses associated with bell pepper was observed in São Paulo State, Brazil. The whiteflies were collected and identified based on a microsatellite locus (primer pair BEM23F and BEM23R) and the mitochondrial cytochrome oxidase I gene followed by restriction fragment length polymorphism analysis and sequencing. We observed that MED was the predominant species collected on bell pepper, but it was also found on tomato, cucumber, eggplant, and weeds grown in greenhouses. In open field, we found MED on tomatoes, bell peppers, and eggplants. In addition, MED was identified in Goiás State in association with ornamental plants. The begomovirus Tomato severe rugose virus and the crinivirus Tomato chlorosis virus was detected on bell pepper and tomato, respectively. Only MED specimens were found associated with the virus-infected plants. Moreover, we also investigated the endosymbionts present in the MED whiteflies. The collected populations of B. tabaci MED harbored a diversity of secondary endosymbionts, with Hamiltonella (H) found predominantly in 89 specimens of the 129 tested. These results represent a new concern for Brazilian agriculture, especially for the management of the newly introduced whitefly MED species, which must be implemented to limit the spreading and establishment of this pest in different crops in this country.


2008 ◽  
Vol 99 (4) ◽  
pp. 325-335 ◽  
Author(s):  
R.V. Sequeira ◽  
A. Shields ◽  
A. Moore ◽  
P. De Barro

AbstractBemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system. Population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September–June) 2001/02–2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.


BioControl ◽  
2013 ◽  
Vol 59 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Gabriel Moura Mascarin ◽  
Nilce Naomi Kobori ◽  
Eliane Dias Quintela ◽  
Steven Paul Arthurs ◽  
Ítalo Delalibera Júnior

2003 ◽  
Vol 93 (11) ◽  
pp. 1422-1429 ◽  
Author(s):  
Belén Simón ◽  
José Luis Cenis ◽  
Francisco Beitia ◽  
Saif Khalid ◽  
Ignacio M. Moreno ◽  
...  

The genetic structure of field populations of begomoviruses and their whitefly vector Bemisia tabaci in Pakistan was analyzed. Begomoviruses and B. tabaci populations were sampled from different crops and weeds in different locations in Punjab and Sindh provinces, in areas where cotton leaf curl disease (CLCuD) occurs or does not occur. Phylogenetic analysis based on nucleotide sequences of the intergenic region in the viral DNA-A provided evidence of two clusters of isolates: viruses isolated from species in the family Malvaceae, and viruses isolated from other dicotyledon families. Analysis of the capsid protein (CP) open reading frame grouped isolates into three geographical clusters, corresponding to isolates collected in Punjab, Sindh, or both provinces. Random amplified polymorphic DNA analyses of the B. tabaci population showed that intrapopulation diversity was high at both the local and regional scales. Sequence analysis of the mitocondrial cytochrome oxydase I (mt COI) gene showed that the B. tabaci population was structured into at least three genetic lineages corresponding to the previously described Indian, Southeast Asian, and Mediterranean-African clades. The Indian clade was present only in Punjab, the Mediterranean-African only in Sindh, and the Southeast Asian in both provinces. B. tabaci haplotypes of the Indian clade were found only in the Punjab, where CLCuD occurs. Hence, the geographical distribution of virus and vector genotypes may be correlated, because similar phylogenetic relationships were detected for the viral CP and the vector mt COI genes.


Sign in / Sign up

Export Citation Format

Share Document