scholarly journals Models Applied to Grapevine Pests: A Review

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 169
Author(s):  
Federico Lessio ◽  
Alberto Alma

This paper reviews the existing predictive models concerning insects and mites harmful to grapevine. A brief conceptual description is given on the definition of a model and about different types of models: deterministic vs. stochastics, continuous vs. discrete, analytical vs. computer-based, and descriptive vs. data-driven. The main biological aspects of grapevine pests covered by different types of models are phenology, population growth and dynamics, species distribution, and invasion risk. A particular emphasis is put on forecasting epidemics of plant disease agents transmitted by insects with sucking-piercing mouthparts. The most investigated species or groups are the glassy-winged sharpshooter Homalodisca vitripennis (Germar) and other vectors of Xylella fastidiosa subsp. fastidiosa, a bacterium agent of Pierce’s disease; the European grape berry moth, Lobesia botrana (Denis and Schiffermuller); and the leafhopper Scaphoideus titanus Ball, the main vector of phytoplasmas agents of Flavescence dorée. Finally, the present and future of decision-support systems (DSS) in viticulture is discussed.

1986 ◽  
Vol 18 (4-5) ◽  
pp. 15-26 ◽  
Author(s):  
D. A. Segar ◽  
E. Stamman

Most historical marine pollution monitoring has proven useless in a management context. A strategy for development of effective marine pollution monitoring programs is outlined. This strategy is based on the following steps: 1) systematic evaluation of the management information needs, 2) identification of the hypothetical impacts associated with those management concerns, and 3) investigation of the feasibility of monitoring those effects such that the existence, or absence, of a specified level of effects can be established in a statistically-valid manner. There are two fundamentally different types of monitoring program: site-specific and regional. These two types of program differ markedly in scope and approach when designed through application of this strategy. The strategy requires development of null hypotheses which address management concerns and which are amenable to scientific testing. In order for the program to be successful, the null hypotheses selected for inclusion in a marine pollution monitoring program must address levels of effect which are predefined to be environmentally significant. The definition of environmentally significant effect levels is a difficult process which must be primarily the responsibility of the managerial community.


Author(s):  
Cristina Portalés ◽  
Manolo Pérez ◽  
Pablo Casanova-Salas ◽  
Jesús Gimeno

Abstract3D modelling of man-made objects is widely used in the cultural heritage sector, among others. It is relevant for its documentation, dissemination and preservation. Related to historical fabrics, weaves and weaving techniques are still mostly represented in forms of 2D graphics and textual descriptions. However, complex geometries are difficult to represent in such forms, hindering the way this legacy is transmitted to new generations. In this paper, we present the design and implementation of SILKNOW’s Virtual Loom, an interactive tool aimed to document, preserve and represent in interactive 3D forms historical weaves and weaving techniques of silk fabrics, dating from the 15th to the 19th centuries. To that end, our tool only requires an image of a historical fabric. Departing from this image, the tool automatically subtracts the design, and allows the user to apply different weaves and weaving techniques. In its current version, the tool embeds five traditional weaving techniques, 39 weaves and six types of yarns, which have been defined thanks to close collaboration of experts in computer graphics, art history and historical fabrics. Additionally, users can change the color of yarns and produce different 3D representations for a given fabric, which are interactive in real time. In this paper, we bring the details of the design and implementation of this tool, focusing on the input data, the strategy to process images, the 3D modelling of yarns, the definition of weaves and weaving techniques and the graphical user interface. In the results section, we show some examples of image analysis in order to subtract the design of historical fabrics, and then we provide 3D representations for all the considered weaving techniques, combining different types of yarns.


2014 ◽  
Vol 87 (4) ◽  
pp. 671-679 ◽  
Author(s):  
Luciana Galetto ◽  
Dimitrios Miliordos ◽  
Chiara Roggia ◽  
Mahnaz Rashidi ◽  
Dario Sacco ◽  
...  

1954 ◽  
Vol 4 (1-2) ◽  
pp. 84-90 ◽  
Author(s):  
G. B. Kerferd

Plato's Sophist begins with an attempt to arrive by division at a definition of a Sophist. In the course of the attempt six different descriptions are discussed and the results summarized at 231 c-e. A seventh and final account may be said to occupy the whole of the rest of the dialogue, including the long digression on negative statements. The first five divisions characterize with a considerable amount of satire different types of sophist, or more probably different aspects of the sophistic art. The sixth division (226 a–231 b) is very different. To quote Cornford's words, ‘satire is dropped. The tone is serious and sympathetic, towards the close it becomes eloquent’.


Author(s):  
David W. Rosen

Abstract Features are meaningful abstractions of geometry that engineers use to reason about components, products, and processes. For design activity, features are design primitives, serve as the basis for product representations, and can incorporate information relevant to life-cycle activities such as manufacturing. Research on feature-based design has matured to the point that results are being incorporated into commercial CAD systems. The intent here is to classify feature-based design literature to provide a solid historical basis for present research and to identify promising research directions that will affect computer-based design tools within the next few years. Applications of feature-based design and technologies of feature representations are reviewed. Open research issues are identified and put in the context of past and current work. Four hypotheses are proposed as challenges for future research: two on the existence of fundamental sub-feature elements and relationships for features, one that presents a new definition of design features, and one that argues for the successful development of concurrent engineering languages. Evidence for these hypotheses is provided from recent research results and from speculation about the future of feature-based design.


Author(s):  
J. Schmitz ◽  
S. Desa

Abstract It is well-known that so-called Concurrent Engineering is a desirable alternative to the largely sequential methods which tend to dominate most product development methods. However, the proper implementation of a concurrent engineering method is still relatively rare. In order to facilitate the development of a reliable concurrent engineering product development method, we start with a careful definition of concurrent engineering and, after an extensive study of all of product development, we propose three criteria which ideal concurrent engineering must satisfy. However, for labor, time, and overall cost considerations, ideal concurrent engineering is infeasible. Instead, we propose a computer-based environment which, by being constructed in accordance with the three criteria, attempts to approach ideal concurrent engineering. The result is the Virtual Concurrent Engineering method and computer implementation environment. This product development method and computer-based implementation system provide the detailed, structured information and data needed to optimally balance the product with respect to the main product development parameters (e.g., manufacturing costs, assembly, reliability). This important information includes re-design suggestions to improve the existing design. The designer can directly apply these re-design suggestions for design optimization, or he can use the results as input into a more complex design optimization or design parameterization function of his own. To demonstrate Virtual Concurrent Engineering, we use it to refine earlier work done by the authors in the Design for Producibility of stamped products. We discuss, in some detail, the results of applying Design for Producibility to complex stampings, including process plans and product producibility computations.


2021 ◽  
Vol 91 (8) ◽  
pp. 887-911
Author(s):  
Manuel F. Isla ◽  
Ernesto Schwarz ◽  
Gonzalo D. Veiga ◽  
Jerónimo J. Zuazo ◽  
Mariano N. Remirez

ABSTRACT The intra-parasequence scale is still relatively unexplored territory in high-resolution sequence stratigraphy. The analysis of internal genetic units of parasequences has commonly been simplified to the definition of bedsets. Such simplification is insufficient to cover the complexity involved in the building of individual parasequences. Different types of intra-parasequence units have been previously identified and characterized in successive wave-dominated shoreface–shelf parasequences in the Lower Cretaceous Pilmatué Member of the Agrio Formation in central Neuquén Basin. Sedimentary and stratigraphic attributes such as the number of intra-parasequence units, their thickness, the proportions of facies associations in the regressive interval, the lateral extent of bounding surfaces, the degree of deepening recorded across these boundaries, and the type and lateral extent of associated transgressive deposits are quantitatively analyzed in this paper. Based on the analysis of these quantified attributes, three different scales of genetic units in parasequences are identified. 1) Bedset complexes are 10–40 m thick, basin to upper-shoreface successions, bounded by 5 to 16 km-long surfaces with a degree of deepening of one to three facies belts. These stratigraphic units represent the highest hierarchy of intra-parasequence stratigraphic units, and the vertical stacking of two or three of them typically forms an individual parasequence. 2) Bedsets are 2–20 m thick, offshore to upper-shoreface successions, bounded by up to 10 km long surfaces with a degree of deepening of zero to one facies belt. Two or three bedsets stack vertically build a bedset complex. 3) Sub-bedsets are 0.5–5 m thick, offshore transition to upper-shoreface successions, bounded by 0.5 to 2 km long surfaces with a degree of deepening of zero to one facies belt. Two or three sub-bedsets commonly stack to form bedsets. The proposed methodology indicates that the combination of thickness with the proportion of facies associations in the regressive interval of stratigraphic units can be used to discriminate between bedsets and sub-bedsets, whereas for higher ranks (bedsets and bedset complexes) the degree of deepening, lateral extent of bounding surfaces, and the characteristics of associated shell-bed deposits become more effective. Finally, the results for the Pilmatué Member are compared with other ancient and Holocene examples to improve understanding of the high-frequency evolution of wave-dominated shoreface–shelf systems.


1992 ◽  
Vol 15 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Sharon Vaughn ◽  
Jeanne Shay Schumm ◽  
Jane Gordon

This research evaluated the efficacy of handwriting, letter tiles, and computer-based instruction on the early spelling acquisition of normal achieving (NLD) and learning disabled (LD) elementary students. The study replicated and extended the Cunningham and Stanovich (1990) study. Forty-eight primary-grade students (24 non-learning disabled; 24 learning disabled) received spelling training under three experimental conditions that involved different types of instructional activity: writing, sorting letter tiles, or typing on the computer. Results indicated no significant differences between the LD and NLD groups on words spelled correctly for any of the three conditions. Since the number of spelling words learned was low across conditions and groups, the number of correctly learned bigrams was examined. No within-group differences emerged for condition (writing, tile, computer); however, significant differences between the groups were found on number of bigrams learned for writing, tile, and computer, with the NLD group outperforming the LD group on all three conditions. Statistically significant time effects for bigrams were also noted for all three conditions. Unlike the Cunningham and Stanovich (1990) study, results did not replicate the superiority of the handwriting condition for the NLD group, nor was the handwriting condition found to be significantly more effective for the LD group.


2016 ◽  
Vol 17 (9) ◽  
pp. 1563 ◽  
Author(s):  
Luciana Galetto ◽  
Dimitrios Miliordos ◽  
Mattia Pegoraro ◽  
Dario Sacco ◽  
Flavio Veratti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document