scholarly journals Comparative analysis of twelve mitogenomes of Caliscelidae (Hemiptera: Fulgoromorpha) and their phylogenetic implications

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12465
Author(s):  
Nian Gong ◽  
Lin Yang ◽  
Xiangsheng Chen

Here, the complete mitochondrial genomes (mitogenomes) of 12 Caliscelidae species, Augilina tetraina, Augilina triaina, Symplana brevistrata, Symplana lii, Neosymplana vittatum, Pseudosymplanella nigrifasciata, Symplanella brevicephala, Symplanella unipuncta, Augilodes binghami, Cylindratus longicephalus, Caliscelis shandongensis, and Peltonotellus sp., were determined and comparatively analyzed. The genomes varied from 15,424 to 16,746 bp in size, comprising 37 mitochondrial genes and an A+T-rich region. The typical gene content and arrangement were similar to those of most Fulgoroidea species. The nucleotide compositions of the mitogenomes were biased toward A/T. All protein-coding genes (PCGs) started with a canonical ATN or GTG codon and ended with TAN or an incomplete stop codon, single T. Among 13 PCGs in 16 reported Caliscelidae mitogenomes, cox1 and atp8 showed the lowest and highest nucleotide diversity, respectively. All PCGs evolved under purifying selection, with atp8 considered a comparatively fast-evolving gene. Phylogenetic relationships were reconstructed based on 13 PCGs in 16 Caliscelidae species and five outgroups using maximum likelihood and Bayesian inference analyses. All species of Caliscelidae formed a steadily monophyletic group with high support. Peltonotellini was present at the basal position of the phylogenetic tree. Augilini was the sister group to Caliscelini and Peltonotellini.

Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 563 ◽  
Author(s):  
Hu Li

In this study, the complete mitochondrial genomes (mitogenomes) of two hoverfly species of Korinchia angustiabdomena (Huo, Ren, and Zheng) and Volucella nigricans Coquillett (Diptera: Syrphidae) were determined and analyzed. The circular mitogenomes were 16,473 bp in K. angustiabdomena (GenBank No. MK870078) and 15,724 bp in V. nigricans (GenBank No. MK870079). Two newly sequenced mitogenomes both contained 37 genes, and the gene order was similar with other syrphine species. All the protein-coding genes (PCGs) were started with the standard ATN codons; and most of PCGs were terminated with a TAA stop codon, while ND1 in K. angustiabdomena ended with a TAG codon, and ND5 terminated with truncated T stop codons in both species. The phylogenetic relationship between K. angustiabdomena and V. nigricans with related lineages was reconstructed using Bayesian inference and Maximum-likelihood analyses. The monophyly of each family considered within Muscomorpha was confirmed by the clades in the phylogenetic tree, and superfamily of the Oestroidea (Calliphoridae, Sarcophagidae, and Oestridae) was unexpectedly found to be a paraphyletic group based on our selected data. This mitogenome information for K. angustiabdomena and V. nigricans could facilitate future studies of evolutionarily related insects.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 779
Author(s):  
Xiaoxiao Chen ◽  
Qing Song ◽  
Min Huang

The complete mitochondrial genomes of Xenostrongylusvariegatus and Epuraea sp. were sequenced and analyzed. The total genome lengths are 17,657 and 16,641 bp, with an A+T content of 77.2% and 76.4%, respectively. Each mitochondrial genome consists of 37 coding genes and a non-coding (AT-rich) region. All protein-coding genes (PCGs) start with the standard start codon, ATN, and end with complete stop codons, TAA and TAG, or an incomplete stop codon, T. All tRNAs can be folded into the typical clover-leaf secondary structure, with the exception of trnS1 in both species with a reduced dihydrouridine (DHU) arm. The AT-rich region has tandem repeats differing in both number and length. Genetic distance and Ka/Ks analyses show that nad6 has a higher variability and more rapid evolutionary rate than other PCGs. Both maximum likelihood and Bayesian inference phylogenetic analyses based on 13 PCGs and 2 ribosome DNAs (rDNAs) agree with the previous phylogenies in supporting the Nitidulidae monophyly and the sister-group relationship of Kateretidae + (Monotomidae + Nitidulidae).


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 338
Author(s):  
Yan Jiang ◽  
Hao-Xi Li ◽  
Xiao-Fei Yu ◽  
Mao-Fa Yang

The complete mitochondrial genomes of Atkinsoniella grahami and Atkinsoniella xanthonota were sequenced. The results showed that the mitogenomes of these two species are 15,621 and 15,895 bp in length, with A+T contents of 78.6% and 78.4%, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (CR). For all PCGs, a standard start ATN codon (ATT, ATG, or ATA) was found at the initiation site, except for ATP8, for which translation is initiated with a TTG codon. All PCGs terminate with a complete TAA or TAG stop codon, except for COX2, which terminates with an incomplete stop codon T. All tRNAs have the typical cloverleaf secondary structure, except for trnS, which has a reduced dihydrouridine arm. Furthermore, these phylogenetic analyses were reconstructed based on 13 PCGs and two rRNA genes of 73 mitochondrial genome sequences, with both the maximum likelihood (ML) and Bayesian inference (BI) methods. The obtained mitogenome sequences in this study will promote research into the classification, population genetics, and evolution of Cicadellinae insects in the future.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


2020 ◽  
Vol 21 (5) ◽  
pp. 1874 ◽  
Author(s):  
Huiting Ruan ◽  
Min Li ◽  
Zhenhai Li ◽  
Jiajie Huang ◽  
Weiyuan Chen ◽  
...  

Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.


2019 ◽  
Author(s):  
Gang Liu ◽  
Lizhi Zhou ◽  
Guanghong Zhao

The phylogenetic relationships between owls and nightjars are rather complex and controversial. To clarify these relationships, we determined the complete mitochondrial genomes of Glaucidium cuculoides, Otus scops, Glaucidium brodiei, Caprimulgus indicus, and Strix leptogrammica, and estimated phylogenetic trees based on the complete mitochondrial genomes and aligned sequences from closely related species that were obtained in GenBank. The complete mitochondrial genomes were 17392, 17317, 17549, 17536, and 16307 bp in length. All mitochondrial genomes contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a putative control region. All mitochondrial genomes except for that of Strix leptogrammica contained a pseudo-control region. ATG, GTG, and ATA are generally start codons, whereas TAA is the most frequent stop codon. All tRNAs in the new mtDNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN) , which missing the “DHU” arm. The phylogenetic relationships demonstrated that Strigiformes and Caprimulgiformes are independent orders, and Aegothelidae is a family within Caprimulgiformes. The results also revealed that Accipitriformes is an independent order, and Pandionidae and Sagittariidae are independent families. The results also supported that Apodiformes is polyphyletic, and hummingbirds (family Trochilidae) belong to Apodiformes. Piciformes was most distantly related to all other analyzed orders.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6866 ◽  
Author(s):  
Gengyun Niu ◽  
Yaoyao Zhang ◽  
Zhenyi Li ◽  
Meicai Wei

A new genus with a new species of the tribe Hoplocampini of Hoplocampinae was described from China: Analcellicampa xanthosoma Wei & Niu, gen. et sp. nov. Hoplocampa danfengensis G. Xiao 1994 was designated as the type species of the new genus. The characters of Analcellicampa danfengensis (G. Xiao) comb. nov. were briefly discussed. A key to the tribes and known genera of Hoplocampinae was provided. The nearly complete mitochondrial genome of A. xanthosoma was characterized as having a length of 15,512 bp and containing 37 genes (22 tRNAs, 13 protein-coding genes (PCGs), and 2 rRNAs). The gene order of this new specimen was the same as that in the inferred insect ancestral mitochondrial genome. All PCGs were initiated by ATN codons and ended with TAA or T stop codons. All tRNAs had a typical cloverleaf secondary structure, except for trnS1. Remarkably, the helices H991 of rrnS and H47 of rrnL were redundant, while helix H563 of rrnL was highly conserved. A phylogeny based on previously reported symphytan mitochondrial genomes showed that A. xanthosoma is a sister group to Monocellicampa pruni, with high support values. We suggest that A. xanthosoma and M. pruni belong to the tribe Hoplocampini of Hoplocampinae.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1049
Author(s):  
Huifeng Zhao ◽  
Ye Chen ◽  
Zitong Wang ◽  
Haifeng Chen ◽  
Yaoguang Qin

The complete mitochondrial genomes of two species of Chalcididae were newly sequenced: Brachymeria lasus and Haltichella nipponensis. Both circular mitogenomes are 15,147 and 15,334 bp in total length, respectively, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A+T-rich region. The nucleotide composition indicated a strong A/T bias. All PCGs of B. lasus and H. nipponensis began with the start codon ATD, except for B. lasus, which had an abnormal initiation codon TTG in ND1. Most PCGs of the two mitogenomes are terminated by a codon of TAR, and the remaining PCGs by the incomplete stop codon T or TA (ATP6, COX3, and ND4 in both species, with an extra CYTB in B. lasus). Except for trnS1 and trnF, all tRNAs can be folded into a typical clover structure. Both mitogenomes had similar control regions, and two repeat units of 135 bp were found in H. nipponensis. Phylogenetic analyses based on two datasets (PCG123 and PCG12) covering Chalcididae and nine families of Chalcidoidea were conducted using two methods (maximum likelihood and Bayesian inference); all the results support Mymaridae as the sister group of the remaining Chalcidoidea, with Chalcididae as the next successive group. Only analyses of PCG123 generated similar topologies of Mymaridae + (Chalcididae + (Agaonidae + remaining Chalcidoidea)) and provided one relative stable clade as Eulophidae + (Torymidae + (Aphelinidae + Trichogrammatidae)). Our mitogenomic phylogenetic results share one important similarity with earlier molecular phylogenetic efforts: strong support for the monophyly of many families, but a largely unresolved or unstable “backbone” of relationships among families.


2019 ◽  
Author(s):  
Gang Liu ◽  
Lizhi Zhou ◽  
Guanghong Zhao

The phylogenetic relationships between owls and nightjars are rather complex and controversial. To clarify these relationships, we determined the complete mitochondrial genomes of Glaucidium cuculoides, Otus scops, Glaucidium brodiei, Caprimulgus indicus, and Strix leptogrammica, and estimated phylogenetic trees based on the complete mitochondrial genomes and aligned sequences from closely related species that were obtained in GenBank. The complete mitochondrial genomes were 17392, 17317, 17549, 17536, and 16307 bp in length. All mitochondrial genomes contained 13 protein-coding genes, two rRNAs, 22 tRNAs, and a putative control region. All mitochondrial genomes except for that of Strix leptogrammica contained a pseudo-control region. ATG, GTG, and ATA are generally start codons, whereas TAA is the most frequent stop codon. All tRNAs in the new mtDNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN) , which missing the “DHU” arm. The phylogenetic relationships demonstrated that Strigiformes and Caprimulgiformes are independent orders, and Aegothelidae is a family within Caprimulgiformes. The results also revealed that Accipitriformes is an independent order, and Pandionidae and Sagittariidae are independent families. The results also supported that Apodiformes is polyphyletic, and hummingbirds (family Trochilidae) belong to Apodiformes. Piciformes was most distantly related to all other analyzed orders.


ZooKeys ◽  
2021 ◽  
Vol 1037 ◽  
pp. 137-159
Author(s):  
Xiaoxiao Chen ◽  
Can Li ◽  
Yuehua Song

The number and classification of tribes in the leafhopper subfamily Typhlocybinae are not yet fully clear, and molecular data has recently been used to help resolve the problem. In this study, the mitochondrial genomes of Mitjaevia shibingensis Chen, Song & Webb, 2020 and M. dworakowskae Chen, Song & Webb, 2020 of the tribe Erythroneurini (Cicadellidae, Typhlocybinae) were sequenced. Most protein-coding genes (PCGs) start with ATN and end with TAA or TAG, and the AT content of these three codons were found differ from previous results that show that the first codon has the highest incidence. Two rRNA genes are highly conserved, and the AT content in 16S is higher than that of 12S. The nucleotide diversity and genetic distance among 13 PCGs of the four tribes from Typhlocybinae show that Empoascini nucleotide diversity is significantly less than in the other three tribes, and have the largest distance from the others, while Typhlocybini and Zyginellini have the smallest distance, indicating that the relationship between the two is the closest. The nad2, nad4, nad4L, and nad5 genes have greater nucleotide diversity, showing potential for use as the main markers for species identification. The phylogenetic analysis yielded a well-supported topology with most branches receiving maximum support and a few branches pertaining to relationships within Zyginellini and Typhlocybini receiving lower support. The species of these two tribes are intertwined, and it was impossible to resolve them into separate branches. In addition, the tribes Empoascini and Erythroneurini were recovered as monophyletic, and Alebrini was placed at the base of the tree as the most primitive. These results are broadly in line with other molecular phylogenetical studies which differ from traditional morphological classification.


Sign in / Sign up

Export Citation Format

Share Document