scholarly journals Effects of Different Nitrogen Sources and Ratios to Carbon on Larval Development and Bioconversion Efficiency in Food Waste Treatment by Black Soldier Fly Larvae (Hermetia illucens)

Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 507
Author(s):  
Yan Lu ◽  
Shouyu Zhang ◽  
Shibo Sun ◽  
Minghuo Wu ◽  
Yongming Bao ◽  
...  

Biowaste treatment by black soldier fly larvae (BSFL, Hermetia illucens) has received global research interest and growing industrial application. Larvae farming conditions, such as temperature, pH, and moisture, have been critically examined. However, the substrate carbon to nitrogen ratio (C/N), one of the key parameters that may affect larval survival and bioconversion efficiency, is significantly less studied. The current study aimed to compare the nitrogen supplying effects of 9 nitrogen species (i.e., NH4Cl, NaNO3, urea, uric acid, Gly, L-Glu, L-Glu:L-Asp (1:1, w/w), soybean flour, and fish meal) during food waste larval treatment, and further examine the C/N effects on the larval development and bioconversion process, using the C/N adjustment with urea from the initial 21:1 to 18:1, 16:1, 14:1, 12:1, and 10:1, respectively. The food wastes were supplied with the same amount of nitrogen element (1 g N/100 g dry wt) in the nitrogen source trial and different amount of urea in the C/N adjustment trial following larvae treatment. The results showed that NH4Cl and NaNO3 caused significant harmful impacts on the larval survival and bioconversion process, while the 7 organic nitrogen species resulted in no significant negative effect. Further adjustment of C/N with urea showed that the C/N range between 18:1 and 14:1 was optimal for a high waste reduction performance (73.5–84.8%, p < 0.001) and a high larvae yield (25.3–26.6%, p = 0.015), while the C/N range of 18:1 to 16:1 was further optimal for an efficient larval protein yield (10.1–11.1%, p = 0.003) and lipid yield (7.6–8.1%, p = 0.002). The adjustment of C/N influenced the activity of antioxidant enzymes, such as superoxide dismutase (SOD, p = 0.015), whereas exerted no obvious impact on the larval amino acid composition. Altogether, organic nitrogen is more suitable than NH4Cl and NaNO3 as the nitrogen amendment during larval food waste treatment, addition of small amounts of urea, targeting C/N of 18:1–14:1, would improve the waste reduction performance, and application of C/N at 18:1–16:1 would facilitate the larval protein and lipid bioconversion process.

2020 ◽  
Vol 42 (10) ◽  
pp. 463-471
Author(s):  
Chul-Hwan Kim ◽  
Kwanyoung Ko ◽  
Jongkeun Lee ◽  
Haegeun Chung

Objectives : Black soldier fly larvae (BSFL) are organisms that effectively decompose various types of organic waste including food waste, and food waste treatment using BSFL is attracting attention as a sustainable waste treatment method. However, food waste discharged from Korea has a wide variety of properties, and its high salt concentration limits its treatment by BSFL. Therefore, to increase the efficiency of food waste treatment using BSFL, it is necessary to increase the quality of food waste as a production medium for BSFL. In this study, the ratio of protein and fat was adjusted by adding bean sprouts and wheat brans to food wastes treated at high temperature under vacuum, and whether such medium is suitable for rearing BSFL was investigated.Methods : To improve the medium, the ratio of protein and fat was adjusted to approximately 2:1 by adding bean sprouts and bran residue to food waste. Subsequently, the growth and development rate of BSFL reared on chicken feed, food waste, food waste + bean sprouts, food waste + wheat bran were measured. Also, the decomposition rate of each medium was analyzed.Results and Discussion : The growth rate of BSFL grown on food waste + wheat bran medium was similar to that of BSFL reared on chicken feed. The speed of development at day 7 was also the fastest for BSFL reared with food waste + wheat bran medium and chicken feed. These results suggest that the mixed medium to which wheat bran has been added to food waste has the potential to be used as a commercial medium for BSFL production. The survival rate of BSFL was 89% or higher in all media.Conclusions : When food waste was used alone, BSFL development was poor compared to that in media combined with agricultural by-products such as bean sprouts and wheat bran. Therefore, to use food waste as a rearing medium of BSFL, it is necessary to adjust the ratio of protein and fat by adding various agricultural by-products and reduce salinity. For the improvement of food waste treatment technology using BSFL, mass rearing of useful insects such as BSFL, and promotion of the use of agricultural by-products, additional research is needed to optimize the composition of rearing medium based on food waste.


2019 ◽  
Vol 12 (3) ◽  
pp. 528-543 ◽  
Author(s):  
Cheng‐Liang Jiang ◽  
Wei‐Zheng Jin ◽  
Xin‐Hua Tao ◽  
Qian Zhang ◽  
Jun Zhu ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 161
Author(s):  
Chul-Hwan Kim ◽  
JunHee Ryu ◽  
Jongkeun Lee ◽  
Kwanyoung Ko ◽  
Ji-yeon Lee ◽  
...  

Food waste accounts for a substantial portion of the organic waste generated at an increasing rate worldwide. Organic waste, including food waste, is largely subjected to landfill disposal, incineration, and anaerobic digestion; however, more sustainable methods are needed for treating it. Treatment of organic waste using black soldier fly (Hermetia illucens) larvae is an environmentally safe and cost-efficient method that has been attracting increasing attention worldwide. Black soldier fly decomposes various types of organic waste and converts them into high-value biomasses such as oils and proteins. This review introduces the trends in research related to the treatment of organic waste by black soldier fly (Hermetia illucens) larvae (BSFL) and their bioconversion efficiencies in Asian countries. Perspectives on the growth of BSFL during waste treatment operation and optimal rearing conditions are provided. The trends in studies related to the application of BSFL as biofuel and animal feed are also discussed. Such use of BSFL would be beneficial in Asia, especially in countries where the technology for processing organic waste is not readily available. This review may provide further directions of investigations including culture techniques for industrial scale applications of BSFL in food waste treatment and resource production in Asian countries.


2020 ◽  
Vol 88 (1) ◽  
Author(s):  
Ciptadi Achmad YUSUP ◽  
Haryo Tejo PRAKOSO ◽  
. SISWANTO ◽  
Deden Dewantara ERIS

Indonesia is the third largest cocoa producer in the world, thus the number of cocoa pod husk (CPH) resulted from this activity is abundant. To handle this waste, farmer usually uses it directly as a feed source to small ruminants but this practice is less effective due to its low protein content and it also contains a substantial amount of lignin. Black Soldier Fly (BSF) (Hermetia illucens L.) (Diptera: Stratiomyidae) larvae are known as bioconversion agents that can be fed upon various organic substrates and they are also high protein source. The aim of this research was to evaluate the possibility of BSF grown on CPH based on their relative growth rate (RGR), efficiency of conversion of ingested food (ECI), waste reduction index (WRI), and development time. Body size of the imago from each treatment was also measured. Larvae were fed with fresh CPH (F), fresh blended CPH (B), composted CPH (C), mix of fresh CPH with food waste (F+FW) and mix of composted CPH with food waste (C+FW). Food waste served as a control. The results of this study show that the most ideal treatment that possible to be applied in cocoa plantation was C+FW treatmentwhich gave average prepupal fresh weight of 11.20 g/100 larvae with 18 days of development time. This treatment had the highest value of WRI and RGR among all treatments. Composted CPH that mixed with food waste treatment also had a shorter development time of BSF larvae.


2021 ◽  
Vol 13 (15) ◽  
pp. 8345
Author(s):  
Kieran Magee ◽  
Joe Halstead ◽  
Richard Small ◽  
Iain Young

One third of food produced globally is wasted. Disposal of this waste is costly and is an example of poor resource management in the face of elevated environmental concerns and increasing food demand. Providing this waste as feedstock for black soldier fly (Hermetia illucens) larvae (BSFL) has the potential for bio-conversion and valorisation by production of useful feed materials and fertilisers. We raised BSFL under optimal conditions (28 °C and 70% relative humidity) on seven UK pre-consumer food waste-stream materials: fish trimmings, sugar-beet pulp, bakery waste, fruit and vegetable waste, cheese waste, fish feed waste and brewer’s grains and yeast. The nutritional quality of the resulting BSFL meals and frass fertiliser were then analysed. In all cases, the volume of waste was reduced (37–79%) and meals containing high quality protein and lipid sources (44.1 ± 4.57% and 35.4 ± 4.12%, respectively) and frass with an NPK of 4.9-2.6-1.7 were produced. This shows the potential value of BSFL as a bio-convertor for the effective management of food waste.


2021 ◽  
pp. 101400
Author(s):  
Fernanda M. Tahamtani ◽  
Emma Ivarsson ◽  
Viktoria Wiklicky ◽  
Cecilia Lalander ◽  
Helena Wall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document