scholarly journals Hyperparasitism of Acroclisoides sinicus (Huang and Liao) (Hymenoptera: Pteromalidae) on Two Biological Control Agents of Halyomorpha halys

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 617
Author(s):  
Alberto Mele ◽  
Davide Scaccini ◽  
Alberto Pozzebon

Halyomorpha halys (Stål) is an invasive Asian pest that causes severe crop losses on various crops. Nowadays, management strategies against this pest mainly rely on pesticide use, but biological control with egg parasitoids is considered the most promising long-term and sustainable solution. Trissolcus japonicus (Ashmead) and Trissolcus mitsukurii (Ashmead) are Asian egg parasitoids already present in Europe and are the most effective biological control agents of H. halys. Therefore, these two species are considered for biological control programs in Europe and other parts of the world. Acroclisoides sinicus (Huang and Liao) is a pteromalid parasitoid wasp that frequently emerged from H. halys egg masses collected in northern Italy. This species has been hypothesized to be a hyperparasitoid of Trissolcus spp. parasitoids. This study was carried out under laboratory conditions where A. sinicus was tested in no-choice and two-choice experiments to assess the host preference between T. japonicus and T. mitsukurii. Olfactory responses of A. sinicus from volatiles emitted from different potential hosts were also tested. In all trials, A. sinicus showed a clear preference for parasitizing H. halys eggs previously parasitized by T. mitsukurii compared to T. japonicus. In no-choice experiments, the impact of the hyperparasitoid on T. japonicus was low, showing an exploitation rate of 4.0%, while up to a 96.2% exploitation rate was observed on T. mitsukurii. Acroclisoides sinicus was also attracted by volatiles emitted by egg masses parasitized by T. mitsukurii, while no response was observed to egg masses parasitized by T. japonicus or not parasitized. Therefore, according to the results obtained here, A. sinicus could limit the population development of T. mitsukurii, while lesser effects are expected on T. japonicus.

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 588
Author(s):  
Livia Zapponi ◽  
Marie Claude Bon ◽  
Jalal Melhem Fouani ◽  
Gianfranco Anfora ◽  
Silvia Schmidt ◽  
...  

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive alien species and a key agricultural pest. Its native parasitoids (Trissolcus japonicus Ashmead and Tr. mitsukurii Ashmead) have been registered in several countries where H. halys brought dramatic economic losses and where biological control is considered to be the most effective long-term solution. By searching for stink bug egg masses and exposing sentinel egg masses, we monitored the distribution of native and exotic egg parasitoids in Trentino-Alto Adige (Italy), an area where both the host and parasitoids are in expansion. We recorded ten pentatomids, seven parasitoid species, with the first report of Tr. japonicus in this area and a hyperparasitoid. In the assemblage, Anastatus bifasciatus (Geoffroy) and Tr. mitsukurii were the dominant parasitoids, with a different distribution in terms of context and host plants. Sycamore was the host plant where the highest number of naturally laid parasitized egg masses (26%) were recorded. Trissolcus mitsukurii showed the highest parasitism rate, and was often found in apple orchards. The emergence of exotic parasitoids showed a temporal delay compared to native ones. Sequence analysis of 823 bp of the CO1 mitochondrial gene revealed that the recovered Tr. japonicus and Tr. mitsukurii harbored one single haplotype each. These haplotypes were previously found in 2018 in Northern Italy. While sentinel egg masses proved to be very effective in tracking the arrival of exotic Trissolcus species, the collection of stink bug egg masses provided fundamental data on the plant host species. The results lend strong support to the adaptation of exotic Trissolcus species to the environmental conditions of the range of introduction, providing new information on plant host-associations, fundamental for the development of biological control programs.


2020 ◽  
Vol 8 ◽  
Author(s):  
Mark Holthouse ◽  
Zachary Schumm ◽  
Elijah Talamas ◽  
Lori Spears ◽  
Diane Alston

The highly polyphagous and invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), has become a significant insect pest in North America since its detection in 1996. It was first documented in northern Utah in 2012 and reports of urban nuisance problems and plant damage have since increased. Biological control is the preferred solution to managing H. halys in North America and other invaded regions due to its alignment with integrated pest management and sustainable practices. Native and non-native biological control agents, namely parasitoid wasps, have been assessed for efficacy. Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae) is an effective egg parasitoid of H. halys in its native range of southeast Asia and has recently been documented parasitising H. halys eggs in North America and Europe. Field surveys for native and exotic egg parasitoids using wild (in situ) and lab-reared H. halys egg masses were conducted in suburban and agricultural sites in northern Utah from June to September 2017–2019. Seven native wasp species in the families Eupelmidae and Scelionidae were discovered guarding H. halys eggs and adult wasps from five of these species completed emergence. Native species had low mean rates of adult emergence from wild (0.5–3.7%) and lab-reared (0–0.4%) egg masses. In 2019, an adventive population of T. japonicus was discovered for the first time in Utah, emerging from 21 of the 106 wild H. halys egg masses found that year, and none from lab-reared eggs. All T. japonicus emerged from egg masses collected on Catalpa speciosa (Warder). Our results support other studies that have observed biological control of H. halys from T. japonicus and improved parasitoid wasp detection with wild as compared to lab-reared H. halys egg masses.


2005 ◽  
Vol 62 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Eduardo Barbosa Beserra ◽  
José Roberto Postali Parra

Egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) can be found in several crops attacking Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) eggs. It is therefore necessary to demonstrate the capacity of these natural enemies in suppressing populations of the pest to allow them to be used in biological control programs against that species. This work had the objective of evaluating the impact of egg layer distribution in S. frugiperda egg masses on the parasitism capacity of Trichogramma atopovirilia Oatman & Platner, 1983. Masses containing one, two, and three layers were used as treatments, and 1.6 parasitoid per egg of the pest were released. Parasitism percentage differences were observed among the three types of masses under study, on average 66.24 ± 8.56%, 45.20 ± 6.20%, and 40.10± 3.46% for egg masses with one, two, and three layers, respectively, demonstrating the potential of use of the parasitoid for the control of fall armyworm.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 984
Author(s):  
Stefanos S. Andreadis ◽  
Nikoloz E. Gogolashvili ◽  
Georgios T. Fifis ◽  
Emmanouel I. Navrozidis ◽  
Thomas Thomidis

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an endemic species of East Asia; it was introduced into Europe in 2007. It has a wide range of hosts as it feeds on over 170 host plant species and significantly impacts crop production. In Greece, H. halys causes significant losses in the production of kiwi, peaches, and green beans; thus, control of this species (including biological control) is essential. Here, we focus on the potential impact of native natural enemies of H. halys in Greece. From June to October 2020, we sampled naturally field-laid H. halys egg masses to recover native parasitoids. A total of 20 egg masses of H. halys were collected from infested fields from different locations in northern Greece. Out of 529 eggs, 45 parasitoids managed to hatch successfully. The overall parasitism rate was 8.5%. We found two species of Hymenopteran egg parasitoids attacking H. halys eggs—Anastatus bifasciatus (Geoffrey) (Hymenoptera: Eupelmidae) and Ooencyrtus telenomicida (Vassiliev) (Hymenoptera: Encyrtidae), with the former comprising 58% of all parasitoids that were recovered. These results contribute to the knowledge about the natural enemy community that attacks H. halys in Greece, and the use of these native egg parasitoids in biological control programs may be a viable H. halys management strategy.


Author(s):  
Mahfouz M. M. Abd-Elgawad

Abstract Background Potato represents Egypt’s largest vegetable export crop. Many plant-parasitic nematodes (PPNs) are globally inflicting damage to potato plants. In Egypt, their economic significance considerably varies according to PPN distribution, population levels, and pathogenicity. Main body This review article highlights the biology, ecology, and economic value of the PPN control viewpoint. The integration of biological control agents (BCAs), as sound and safe potato production practice, with other phytosanitary measures to manage PPNs is presented for sustainable agriculture. A few cases of BCA integration with such other options as synergistic/additive PPN management measures to upgrade crop yields are reviewed. Yet, various attributes of BCAs should better be grasped so that they can fit in at the emerging and/or existing integrated management strategies of potato pests. Conclusion A few inexpensive biocontrol products, for PPNs control on potato, versus their corresponding costly chemical nematicides are gathered and listed for consideration. Hence, raising awareness of farmers for making these biologicals familiar and easy to use will promote their wider application while offering safe and increased potato yield.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 787
Author(s):  
Giuseppino Sabbatini-Peverieri ◽  
Christine Dieckhoff ◽  
Lucrezia Giovannini ◽  
Leonardo Marianelli ◽  
Pio Federico Roversi ◽  
...  

Halyomorpha halys is a severe agricultural pest of Asian origin that has invaded many countries throughout the world. Pesticides are currently the favored control methods, but as a consequence of their frequent use, often disrupt Integrated Pest Management. Biological control with egg parasitoids is seen as the most promising control method over the long-term. Knowledge of the reproductive biology under laboratory conditions of the most effective candidates (Trissolcus japonicus and Trissolcus mitsukurii) for optimizing production for field releases is strongly needed. Rearing of these egg parasitoids was tested by offering three different host supply regimes using new emerged females and aged, host-deprived females in different combinations. Results showed a mean progeny per female ranging from 80 to 85 specimens for T. japonicus and from 63 to 83 for T. mitsukurii. Sex ratios were strongly female biased in all combinations and emergence rates exceeded 94% overall. Cumulative curves showed that longer parasitization periods beyond 10–14 days (under the adopted rearing regimes) will not lead to a significantly increase in progeny production. However, ageing females accumulate eggs in their ovaries that can be quickly laid if a sufficient number of host eggs are supplied, thus optimizing host resources. Our data showed that offering H. halys egg masses to host-deprived female Trissolcus once a week for three weeks allowed its eggs to accumulate in the ovary, providing the greatest number of offspring within a three week span.


2016 ◽  
Vol 103 ◽  
pp. 11-20 ◽  
Author(s):  
Mary L. Cornelius ◽  
Christine Dieckhoff ◽  
Kim A. Hoelmer ◽  
Richard T. Olsen ◽  
Donald C. Weber ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1815
Author(s):  
Kazuhiro Hamaoka ◽  
Yoshinao Aoki ◽  
Shunji Suzuki

As the use of chemical fungicides has raised environmental concerns, biological control agents have attracted interest as an alternative to chemical fungicides for plant-disease control. In this study, we attempted to explore biological control agents for three fungal phytopathogens causing downy mildew, gray mold, and ripe rot in grapevines, which are derived from shoot xylem of grapevines. KOF112, which was isolated from the Japanese indigenous wine grape Vitis sp. cv. Koshu, inhibited mycelial growth of Botrytis cinerea, Colletotrichum gloeosporioides, and Phytophthora infestans. The KOF112-inhibited mycelial tips were swollen or ruptured, suggesting that KOF112 produces antifungal substances. Analysis of the 16S rDNA sequence revealed that KOF112 is a strain of Bacillus velezensis. Comparative genome analysis indicated significant differences in the synthesis of non-ribosomal synthesized antimicrobial peptides and polyketides between KOF112 and the antagonistic B. velezensis FZB42. KOF112 showed biocontrol activities against gray mold caused by B. cinerea, anthracnose by C. gloeosporioides, and downy mildew by Plasmopara viticola. In the KOF112–P. viticola interaction, KOF112 inhibited zoospore release from P. viticola zoosporangia but not zoospore germination. In addition, KOF112 drastically upregulated the expression of genes encoding class IV chitinase and β-1,3-glucanase in grape leaves, suggesting that KOF112 also works as a biotic elicitor in grapevine. Because it is considered that endophytic KOF112 can colonize well in and/or on grapevine, KOF112 may contribute to pest-management strategies in viticulture and potentially reduce the frequency of chemical fungicide application.


2019 ◽  
Vol 73 ◽  
pp. 153-200 ◽  
Author(s):  
Francesco Tortorici ◽  
Elijah J. Talamas ◽  
Silvia T. Moraglio ◽  
Marco G. Pansa ◽  
Maryam Asadi-Farfar ◽  
...  

Accurate identification of parasitoids is crucial for biological control of the invasive brown marmorated stink bug, Halyomrpha halys (Stål). A recent work by Talamas et al. (2017) revised the Palearctic fauna of Trissolcus Ashmead, egg-parasitoids of stink bugs, and treated numerous species as junior synonyms of T. semistriatus (Nees von Esenbeck). In the present paper, we provide a detailed taxonomic history and treatment of T. semistriatus and the species treated as its synonyms by Talamas et al. (2017) based on examination of primary types, molecular analyses and mating experiments. Trissolcus semistriatus, T. belenus (Walker), T. colemani (Crawford), and T. manteroi (Kieffer) are here recognized as valid and a key to species is provided. The identification tools provided here will facilitate the use of Trissolcus wasps as biological control agents and as the subject of ecological studies.


2020 ◽  
Author(s):  
Andrew C. Wylie ◽  
Zamir K. Punja

Biological control of plant diseases is important in organic greenhouse vegetable production where fungicide use is limited. Organic producers employ microbially-diverse substrates, including composts, as media for plant growth. Previous research into the impact of vermicompost on the efficacy of applied biocontrol agents is limited. An in vitro assay was developed to test the efficacy of two biological control agents in a competitive microbial background. Suppression of the pathogen Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) by Clonostachys rosea f. catenulata (Gliocladium catenulatum strain J1446 (Prestop®) and Bacillus subtilis strain QST 713 (Rhapsody®), was assessed on agar media amended with aerated vermicompost tea (ACT). Pathogen growth was reduced more by C. rosea than ACT alone and C. rosea was equally effective when combined with ACT. In contrast, B. subtilis reduced pathogen growth less than ACT, and when combined, reduced pathogen growth not more than ACT alone. Both biocontrol agents were similarly tested with ACT against Forc and Rhizoctonia solani on cucumber and radish. Additive, neutral, and antagonistic responses, depending on host, pathogen, and biocontrol agent, were observed. ACT alone provided more consistent disease suppression on cucumber compared with B. subtilis or C. rosea. In combination, disease suppression was most often better than each biocontrol alone but not better than ACT alone. ACT had antagonistic or additive interactions with C. rosea in the radish/R. solani pathosystem, depending on the experiment. The specific and general suppression of plant diseases by biological control agents in microbially-rich environments is variable and requires further study.


Sign in / Sign up

Export Citation Format

Share Document