scholarly journals Modeling and Simulations of the Sulfur Infiltration in Activated Carbon Fabrics during Composite Cathode Fabrication for Lithium-Sulfur Batteries

2021 ◽  
Vol 5 (3) ◽  
pp. 65
Author(s):  
Kyriakos Lasetta ◽  
Joseph Paul Baboo ◽  
Constantina Lekakou

During the manufacture of a composite cathode for lithium-sulfur (Li-S) batteries it is important to realize homogeneous infiltration of a specified amount of sulfur, targeted to be at least 5 mg cm−2 to achieve good battery performance in terms of high energy density. A model of the sulfur infiltration is presented in this study, taking into account the pore size distribution of the porous cathode host, phase transitions in sulfur, and formation of different sulfur allotropes, depending on pore size, formation energy and available thermal energy. Simulations of sulfur infiltration into an activated carbon fabric at a hot-plate temperature of 175 °C for two hours predicted a composite cathode with 41 wt% sulfur (8.3 mg cm−2), in excellent agreement with the experiment. The pore size distribution of the porous carbon host proved critical for both the extent and form of retained sulfur, where pores below 0.4 nm could not accommodate any sulfur, pores between 0.4 and 0.7 nm retained S4 and S6 allotropes, and pores between 0.7 and 1.5 nm contained S8.

2014 ◽  
Vol 9 (2) ◽  
pp. 155892501400900 ◽  
Author(s):  
Wei Liu ◽  
Sabit Adanur

Activated carbon fibers (ACFs) are one of the most promising adsorbents due to their outstanding properties, such as more exposed adsorption surface, narrower pore size distribution, fast adsorption rate and flexibility, in comparison with granular activated carbon and activated carbon powder. In this work, ACFs manufactured from various raw materials were studied and their pore structures and sulfur dioxide removal performance under dry and humid conditions were investigated. From the ACFs studied in this paper, larger surface area was found correspond to higher total pore volume and larger DA micropore diameter. In dry air, breakthrough capacity of ACFs with sulfur dioxide was found to be proportionately dependent on micropore ratio and pore size distribution. Although powdered activated carbon (PAC) showed higher breakthrough capacity, its adsorption rate was slower than ACFs due to the difference of the pore structure. The presence of water vapor in the air stream greatly increased SO2 adsorption capacities of ACFs but affected their utilization differently.


RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35545-35556
Author(s):  
Mingjun Pang ◽  
Shang Jiang ◽  
Jianguo Zhao ◽  
Sufang Zhang ◽  
Runwei Wang ◽  
...  

To design high specific surface area and optimize the pore size distribution of materials, we employ a combination of carbonization and KOH activation to prepare activated carbon derived from ground grain hulls.


Carbon ◽  
2014 ◽  
Vol 78 ◽  
pp. 113-120 ◽  
Author(s):  
Cheng Hu ◽  
Saeid Sedghi ◽  
S. Hadi Madani ◽  
Ana Silvestre-Albero ◽  
Hirotoshi Sakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document