scholarly journals Evaluation of Strength and Muscle Activation Indicators in Sticking Point Region of National-Level Paralympic Powerlifting Athletes

2021 ◽  
Vol 6 (2) ◽  
pp. 43
Author(s):  
Felipe J. Aidar ◽  
Filipe Manuel Clemente ◽  
Dihogo Gama de Matos ◽  
Anderson Carlos Marçal ◽  
Raphael Fabrício de Souza ◽  
...  

Background: The sticking region is considered an intervening factor in the performance of the bench press with high loads. Objective: To evaluate the strength indicators in the sticking point region in Powerlifting Paralympic athletes. Methods: Twelve Brazilian Powerlifting Paralympic athletes performed maximum isometric force (MIF), rate of force development (RFD), time at MIF, velocity, dynamic time in sticking, and surface electromyography in several distances from the bar to the chest. Results: For velocity, there was a difference between the pre-sticking and sticking region (1.98 ± 0.32 and 1.30 ± 0.43, p = 0.039) and dynamic time between the pre-sticking and the sticking region (0.40 ± 0.16 and 0.97 ± 0.37, p = 00.021). In static test for the MIF, differences were found between 5.0 cm and 15.0 cm (CI 95% 784; 1088; p = 0.010) and between 10.0 cm and 5.0 cm (CI 95% 527; 768; p < 0.001). Regarding the RFD, differences were found (CI 95% 938; 1240; p = 0.004) between 5.0 cm and 25.0 cm and between 10.0 cm and 25.0 cm (CI 95% 513; 732; p < 0.001). In relation to time, there were differences between 5.0 cm and 15.0 cm (CI 95% 0.330; 0.515; p < 0.001), 5.0 cm, and 25.0 cm (CI 95% 0.928; 1.345; p = 0.001), 10.0 cm and 15.0 cm (p < 0.05) and 15.0 cm and 25.0 cm (p < 0.05). No significant differences were observed between the muscles in electromyography, although the triceps showed the highest muscle activation values. Conclusions: The maximum isometric force, rate of force development, time, velocity, and dynamic time had lower values, especially in the initial and intermediate phases in the sticking region.

2016 ◽  
Vol 51 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Spyridon Methenitis ◽  
Gerasimos Terzis ◽  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Karandreas

Abstract Conduction of electrical signals along the surface of muscle fibers is acknowledged as an essential neuromuscular component which is linked with muscle force production. However, it remains unclear whether muscle fiber conduction velocity (MFCV) is also linked with explosive performance. The aim of the present study was to investigate the relationship between vastus lateralis MFCV and countermovement jumping performance, the rate of force development and maximum isometric force. Fifteen moderately-trained young females performed countermovement jumps as well as an isometric leg press test in order to determine the rate of force development and maximum isometric force. Vastus lateralis MFCV was measured with intramuscular microelectrodes at rest on a different occasion. Maximum MFCV was significantly correlated with maximum isometric force (r = 0.66, p < 0.01), nevertheless even closer with the leg press rate of force development at 100 ms, 150 ms, 200 ms, and 250 ms (r = 0.85, r = 0.89, r = 0.91, r = 0.92, respectively, p < 0.01). Similarly, mean MFCV and type II MFCV were better correlated with the rate of force development than with maximum isometric leg press force. Lower, but significant correlations were found between mean MFCV and countermovement jump power (r = 0.65, p < 0.01). These data suggest that muscle fiber conduction velocity is better linked with the rate of force development than with isometric force, perhaps because conduction velocity is higher in the larger and fastest muscle fibers which are recognized to contribute to explosive actions.


1992 ◽  
Vol 263 (5) ◽  
pp. C1065-C1072 ◽  
Author(s):  
C. J. Barclay

Changes in the rate of isometric force development with fatigue were measured in vitro (25 degrees C) using mouse soleus and extensor digitorum longus (EDL) muscles. Muscles were fatigued using 30 tetanic contractions. Rate of force development was determined from the rate constant of an exponential curve fitted to the rising force phase of a tetanus. For both muscles, when the intertetanus interval was 3 s, maximum isometric force and relaxation rate were significantly reduced in the final tetanus relative to the values in the first tetanus. Rate of force development in soleus muscles transiently increased and then decreased a small amount. The final rate was 92.7 +/- 3.3% (n = 4) of the initial rate. In contrast, the rate of force development in EDL muscles increased to 133.7 +/- 3.3% (n = 4) of the initial rate. This increased rate was evident from the second tetanus of the series, was fully established after 5 tetani, and the magnitude of the increase in rate was inversely proportional to intertetanus interval and was independent of presumed energy expenditure. The enhanced rate decayed with a time constant of 14.3 +/- 2.0 s and was independent of presumed energy expenditure. Most of these observations can be explained by the effects of P(i) on cross bridge kinetics. Other possible mechanisms, involving more rapid activation, are also suggested.


Author(s):  
Carlos Rodriguez-Lopez ◽  
Julian Alcazar ◽  
Jose Losa-Reyna ◽  
JuanManuel Carmona-Torres ◽  
Aurora Maria Cruz-Santaella ◽  
...  

AbstractThis study investigated the acute responses to volume-load-matched heavy-load (80% 1RM) versus light-load (40% 1RM) power-oriented resistance training sessions in well-functioning older adults. Using a randomized cross-over design, 15 volunteers completed each condition on a leg press. Neuromuscular (maximal isometric force and rate of force development) and functional performance (power during sit-to-stand test), lactate, and muscle damage biochemistry (creatine kinase, lactate dehydrogenase and C-reactive protein serum concentration) were assessed pre- and post-exercise. Performance declines were found after heavy-load (Cohen’s d effect size (d); maximal isometric force=0.95 d; rate of force development=1.17 d; sit-to-stand power =0.38 d, all p<0.05) and light-load (maximal isometric force=0.45 d; rate of force development=0.9 d; sit-to-stand power=1.17 d, all p<0.05), while lactate concentration increased only after light-load (1.7 d, p=0.001). However, no differences were found between conditions (all p>0.05). Both conditions increased creatine kinase the day after exercise (marginal effect=0.75 d, p<0.001), but no other blood markers increased (all, p>0.05). Irrespective of the load used, power training induced non-clinically significant decreases in sit-to-stand performance, moderate declines in maximal isometric force, but pronounced decreases in the rate of force development. Furthermore, the metabolic stress and muscle damage were minor; both sessions were generally well tolerated by well-functioning older adults without previous experience in resistance training.


Author(s):  
Danny Lum ◽  
Abdul Rashid Aziz

Force–time characteristics obtained during isometric strength tests are significantly correlated to various sporting movements. However, data on the relationship between isometric force–time characteristics and sprint kayaking performance are lacking in the literature. Purpose: The purpose of the study was, therefore, to investigate the relationship between sprint kayaking performance with ergometer performance and measures from 3 isometric strength tests: isometric squat, isometric bench press, and isometric prone bench pull. Methods: A total of 23 sprint kayaking athletes performed all 3 tests, at 90° and 120° knee angles for isometric squat and at elbow angles for isometric bench press and isometric prone bench pull, and a 200-m sprint on-water to attain the fastest time-to-completion (OWTT) possible and on a kayak ergometer to attain the highest mean power (LABTT) possible. Results: There was a significant inverse correlation between OWTT and LABTT (r = −.90, P < .001). The peak forces achieved from all isometric strength tests were significantly correlated with time-to-completion for OWTT and mean power for LABTT (r = −.44 to −.88, P < .05 and .47 to .80, P < .05, respectively). OWTT was significantly correlated with the peak rate of force development during all isometric tests except for the isometric squat at a 120° knee angle (r = −.47 to −.62, P < .05). LABTT was significantly correlated with peak rate of force development from the isometric bench press and isometric prone bench pull (r = .64–.86, P < .01). Conclusion: Based on the observed strong correlations, the mean power attained during LABTT is a good predictor of OWTT time-to-completion. Furthermore, upper- and lower-body maximum strength and peak rate of force development are equally important for on-water and ergometer sprint kayaking performance.


2019 ◽  
Vol 119 (9) ◽  
pp. 2065-2073 ◽  
Author(s):  
David A. Rice ◽  
Jamie Mannion ◽  
Gwyn N. Lewis ◽  
Peter J. McNair ◽  
Lana Fort

1992 ◽  
Vol 73 (1) ◽  
pp. 71-74 ◽  
Author(s):  
B. M. Block ◽  
S. R. Barry ◽  
J. A. Faulkner

We hypothesized that methylxanthines, such as aminophylline, increase the power developed by submaximally activated frog skeletal muscles by increasing the force developed at any given velocity of shortening. Frog semitendinosus muscles were excised and tested at 20 degrees C in oxygenated control and aminophylline Ringer solutions. Force-velocity relationships were determined and power was calculated from muscles stimulated at frequencies of 80 and 300 Hz. The 300-Hz frequency of stimulation produced a maximum rate of force development. In 50 and 500 microM aminophylline, twitch force increased by 25 +/- 12 and 75 +/- 13%, respectively. Aminophylline did not affect maximum isometric force generation or the shortening velocity at any relative load. At 80-Hz stimulation and in the presence of 500 microM aminophylline, power increased by an average of 11% at 10 of 14 relative loads. At maximum frequencies of stimulation, aminophylline had no effect on any measured parameter. We conclude that aminophylline increases the power developed by submaximally activated frog muscles through an increase in the force generated particularly at the lower velocities of shortening.


2020 ◽  
Vol 45 (9) ◽  
pp. 996-1006 ◽  
Author(s):  
Spyridon Methenitis ◽  
Thomas Mpampoulis ◽  
Polyxeni Spiliopoulou ◽  
George Papadimas ◽  
Constantinos Papadopoulos ◽  
...  

This study aimed to investigate the effect of 3 different eccentric-only power training volumes on muscle fiber type composition and power performance. Twenty-nine females were assigned into 3 groups and performed 10 weeks of either 3 (low volume), 6 (moderate volume), or 9 (high volume) sets/session of 4 fast-velocity eccentric-only half-squats against 70% of concentric 1-repetition maximum (1RM), followed by 3 maximum countermovement jumps (CMJs) after each set. Half-squat 1RM, CMJ height/power, maximum isometric force, rate of force development (RFD) and muscle fiber cross-sectional area (CSA) were increased in all groups (p = 0.001). Low-volume training induced higher increases in CMJ height/power and early RFD, compared with the moderate- and high-volume training programs (p < 0.001). Significant reductions in type IIx muscle fiber percentages and %CSAs were found after moderate- and high-volume training, with concomitant increases in type IIa fibers (p = 0.001). Significant correlations were found between the changes in type IIa and type IIx percentages, fiber CSA, %CSA, and the changes in performance (r: –0.787 to 0.792; p < 0.05). These results suggest that relatively large eccentric power training volumes may result in detrimental neuromuscular adaptations, minimal changes in early RFD, and a reduction of type IIx muscle fiber percentage. Novelty Low but not high volume of power training maintains type IIx muscle fibers. Early rate of force development increases after a low- or moderate-power training volume, but not after a high-power training volume. Training-induced changes in type IIx muscle fiber percentage is related with changes in early rate of force development.


2008 ◽  
Vol 33 (3) ◽  
pp. 518-526 ◽  
Author(s):  
Cornelis J. de Ruiter ◽  
Tinelies E. Busé-Pot ◽  
Arnold de Haan

During many movements (e.g., running, jumping, and kicking) there is little time for skeletal muscles to build up force, thus rapid force development is important. The length dependency of isometric force development was investigated in maximally activated rat medial gastrocnemius muscles in situ with intact blood flow at 35 °C. Depending on time available for muscle activation, the length dependency of force development was expected to differ from that of the maximal isometric force (Fmax) reached much later during the contraction. During isometric force development in intact muscle–tendon preparations, the contractile elements actually shortened. Therefore, similar to previous findings on shortening contractions, it was hypothesized that maximal rate of force development (MRFD) would be obtained at a length below the optimum (Lo) for maximal isometric force production. To measure the effect of the entire time history of activation, force time integrals (FTIs) for different activation times (10–50 ms) were also calculated. The highest MRFD was obtained 1.94 ± 0.42 mm below (p < 0.05) Lo. When expressed relative to Fmax obtained at each individual length, the optimum was found at Lo – 4.4 mm. For FTI 10 ms and FTI 20 ms, optimum length was obtained at ~2 and 1 mm above (p < 0.05) Lo, respectively, whereas the optima for FTI 30, 40, and 50 ms were ~1 mm below (p < 0.05) Lo. In addition, at short lengths (< Lo – 4 mm) and for all activation times FTIs were relatively more decreased than Fmax. In conclusion, length dependency of force output during rapid force development differed from that of maximal isometric force; specifically, MRFD was obtained 2 mm below Lo.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257810
Author(s):  
Tanise Pires Mendonça ◽  
Felipe José Aidar ◽  
Dihogo Gama Matos ◽  
Raphael Fabrício Souza ◽  
Anderson Carlos Marçal ◽  
...  

Paralympic Powerlifting is a sport in which the strength of the upper limbs is assessed through bench press performance in an adapted specific bench. It is therefore essential to optimize training methods to maximize this performance. The aim of the present study was to compare force production and muscle activation involved in partial vs. full range of motion (ROM) training in Paralympic Powerlifting. Twelve male athletes of elite national level in Paralympic Powerlifting participated in the study (28.60 ± 7.60 years of age, 71.80 ± 17.90 kg of body mass). The athletes performed five sets of 5RM (repetition maximum), either with 90% of 1RM in full ROM or with a load of 130% 1RM in partial ROM. All subjects underwent both exercise conditions in consecutive weeks. Order assignment in the first week was random and counterbalanced. Fatigue index (FI), Maximum Isometric Force (MIF), Time to MIF (Time) and rate of force development (RFD) were determined by a force sensor. Muscle thickness was obtained using ultrasound images. All measures were taken pre- and post-training. Additionally, electromyographic signal (EMG) was evaluated in the last set of each exercise condition. Post-exercise fatigue was higher with full ROM as well as loss of MIF. Full ROM also induced greater. EMG showed greater activation of the Clavicular portion and Sternal portion of pectoralis major muscle and lower in the anterior portion of deltoid muscle when full ROM was performed. Muscle thickness of the pectoralis major muscle increased post-exercise. We concluded that training with partial ROM enables higher workloads with lower loss of muscle function.


Sign in / Sign up

Export Citation Format

Share Document