scholarly journals Hyperspectral Imaging Using Laser Excitation for Fast Raman and Fluorescence Hyperspectral Imaging for Sorting and Quality Control Applications

2018 ◽  
Vol 4 (10) ◽  
pp. 110 ◽  
Author(s):  
Florian Gruber ◽  
Philipp Wollmann ◽  
Wulf Grählert ◽  
Stefan Kaskel

A hyperspectral measurement system for the fast and large area measurement of Raman and fluorescence signals was developed, characterized and tested. This laser hyperspectral imaging system (Laser-HSI) can be used for sorting tasks and for continuous quality monitoring. The system uses a 532 nm Nd:YAG laser and a standard pushbroom HSI camera. Depending on the lens selected, it is possible to cover large areas (e.g., field of view (FOV) = 386 mm) or to achieve high spatial resolutions (e.g., 0.02 mm). The developed Laser-HSI was used for four exemplary experiments: (a) the measurement and classification of a mixture of sulphur and naphthalene; (b) the measurement of carotenoid distribution in a carrot slice; (c) the classification of black polymer particles; and, (d) the localization of impurities on a lead zirconate titanate (PZT) piezoelectric actuator. It could be shown that the measurement data obtained were in good agreement with reference measurements taken with a high-resolution Raman microscope. Furthermore, the suitability of the measurements for classification using machine learning algorithms was also demonstrated. The developed Laser-HSI could be used in the future for complex quality control or sorting tasks where conventional HSI systems fail.

Author(s):  
Laura M. DALE ◽  
André THEWIS ◽  
Ioan ROTAR ◽  
Juan A. FERNANDEZ PIERNA ◽  
Christelle BOUDRY ◽  
...  

Nowadays in agriculture, new analytical tools based on spectroscopic technologies are developed. Near Infrared Spectroscopy (NIRS) is a well known technology in the agricultural sector allowing the acquisition of chemical information from the samples with a large number of advantages, such as: easy to use tool, fast and simultaneous analysis of several components, non-polluting, noninvasive and non destructive technology, and possibility of online or field implementation. Recently, NIRS system was combined with imaging technologies creating the Near Infrared Hyperspectral Imaging system (NIR-HSI). This technology provides simultaneously spectral and spatial information from an object. The main differences between NIR-HSI and NIRS is that many spectra can be recorded simultaneously from a large area of an object with the former while with NIRS only one spectrum was recorded for analysis on a small area. In this work, both technologies are presented with special focus on the main spectrum and images analysis methods. Several qualitative and quantitative applications of NIRS and NIR-HSI in agricultural products are listed. Developments of NIRS and NIR-HSI will enhance progress in the field of agriculture by providing high quality and safe agricultural products, better plant and grain selection techniques or compound feed industry’s productivity among others.


2018 ◽  
Author(s):  
Mohammadmehdi Saberioon ◽  
Petr Cisar ◽  
Laurent Labbé ◽  
Pavel Souček ◽  
Pablo Pelissier

The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the influence of different diets on fish skin. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N= 80) or a 100 % plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference and the average spectral data from the region of interest were extracted. Six spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative(FD), Second Derivative (SD), Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Additionally, the Genetic algorithm (GA) was used to select optimal wavelengths to reduce the high dimensionality from hyperspectral images in order to decrease the computational costs and simplify the classification models. Overall classification models established from full wavelengths and selected wavelengths showed the good performance (Correct Classification Rate (CCR) = 0.871, Kappa = 0.741) when coupled with SG. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms has promise for discriminating different diets based on the live fish skin.


2011 ◽  
Vol 103 (3) ◽  
pp. 333-344 ◽  
Author(s):  
Gamal ElMasry ◽  
Abdullah Iqbal ◽  
Da-Wen Sun ◽  
Paul Allen ◽  
Paddy Ward

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2899
Author(s):  
Youngwook Seo ◽  
Giyoung Kim ◽  
Jongguk Lim ◽  
Ahyeong Lee ◽  
Balgeum Kim ◽  
...  

Contamination is a critical issue that affects food consumption adversely. Therefore, efficient detection and classification of food contaminants are essential to ensure food safety. This study applied a visible and near-infrared (VNIR) hyperspectral imaging technique to detect and classify organic residues on the metallic surfaces of food processing machinery. The experimental analysis was performed by diluting both potato and spinach juices to six different concentration levels using distilled water. The 3D hypercube data were acquired in the range of 400–1000 nm using a line-scan VNIR hyperspectral imaging system. Each diluted residue in the spectral domain was detected and classified using six classification methods, including a 1D convolutional neural network (CNN-1D) and five pre-processing methods. Among them, CNN-1D exhibited the highest classification accuracy, with a 0.99 and 0.98 calibration result and a 0.94 validation result for both spinach and potato residues. Therefore, in comparison with the validation accuracy of the support vector machine classifier (0.9 and 0.92 for spinach and potato, respectively), the CNN-1D technique demonstrated improved performance. Hence, the VNIR hyperspectral imaging technique with deep learning can potentially afford rapid and non-destructive detection and classification of organic residues in food facilities.


2020 ◽  
Vol 6 (3) ◽  
pp. 261-263
Author(s):  
Marianne Maktabi ◽  
Hannes Köhler ◽  
Claire Chalopin ◽  
Thomas Neumuth ◽  
Yannis Wichmann ◽  
...  

AbstractDiscrimination of malignant and non-malignant cells of histopathologic specimens is a key step in cancer diagnostics. Hyperspectral Imaging (HSI) allows the acquisition of spectra in the visual and near-infrared range (500-1000nm). HSI can support the identification and classification of cancer cells using machine learning algorithms. In this work, we tested four classification methods on histopathological slides of esophageal adenocarcinoma. The best results were achieved with a Multi-Layer Perceptron. Sensitivity and F1-Score values of 90% were obtained.


2018 ◽  
Author(s):  
Mohammadmehdi Saberioon ◽  
Petr Cisar ◽  
Laurent Labbé ◽  
Pavel Souček ◽  
Pablo Pelissier

The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the influence of different diets on fish skin. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N= 80) or a 100 % plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference and the average spectral data from the region of interest were extracted. Six spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative(FD), Second Derivative (SD), Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Additionally, the Genetic algorithm (GA) was used to select optimal wavelengths to reduce the high dimensionality from hyperspectral images in order to decrease the computational costs and simplify the classification models. Overall classification models established from full wavelengths and selected wavelengths showed the good performance (Correct Classification Rate (CCR) = 0.871, Kappa = 0.741) when coupled with SG. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms has promise for discriminating different diets based on the live fish skin.


NIR news ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Gabriele Mirschel ◽  
Olesya Daikos ◽  
Tom Scherzer ◽  
Carsten Steckert

This paper highlights the potential of large-area hyperspectral imaging for process and quality control in established manufacturing and modification processes of technical textiles. In particular, it is focused on applications in lamination and impregnation of textiles. In case of lamination, NIR chemical imaging was applied to monitor the thickness of the adhesive layers inside the textile laminates and to detect lamination errors, whereas it was used to monitor the homogeneity of the functional finishes applied by impregnation. In both cases, low application weights ranging from only a few to several tens or hundreds grams per square meter have to be detected, which poses a challenge to the sensitivity of the method.


Sign in / Sign up

Export Citation Format

Share Document