scholarly journals Detection of Small Ship Objects Using Anchor Boxes Cluster and Feature Pyramid Network Model for SAR Imagery

2020 ◽  
Vol 8 (2) ◽  
pp. 112 ◽  
Author(s):  
Peng Chen ◽  
Ying Li ◽  
Hui Zhou ◽  
Bingxin Liu ◽  
Peng Liu

The synthetic aperture radar (SAR) has a special ability to detect objects in any climate and weather conditions. Consequently, SAR images are widely used in maritime transportation safety and fishery law enforcement for maritime object detection. Currently, deep-learning models are being extensively used for the detection of objects from images. Among them, the feature pyramid network (FPN) uses pyramids for representing semantic information regardless of the scale and has an improved accuracy of object detection. It is also suitable for the detection of multiple small ship objects in SAR images. This study aims to resolve the problems associated with small-object and multi-object ship detection in complex scenarios e.g., when a ship nears the port, by proposing a detection method based on an optimized FPN model. The feature pyramid model is first embedded in a traditional region proposal network (RPN) and mapped into a new feature space for object identification. Subsequently, the k-means clustering algorithm based on the shape similar distance (SSD) measure is used to optimize the FPN. Initial anchor boxes and tests are created using the SAR ship dataset. Experimental results show that the proposed algorithm for object detection shows an accuracy of 98.62%. Compared with Yolo, the RPN based on VGG/ResNet, FPN based on VGG/ResNet, and other models in complex scenarios, the proposed model shows a higher accuracy rate and better overall performance.

2021 ◽  
Vol 13 (14) ◽  
pp. 2771
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Xiao Ke

Ship detection from synthetic aperture radar (SAR) imagery is a fundamental and significant marine mission. It plays an important role in marine traffic control, marine fishery management, and marine rescue. Nevertheless, there are still some challenges hindering accuracy improvements of SAR ship detection, e.g., complex background interferences, multi-scale ship feature differences, and indistinctive small ship features. Therefore, to address these problems, a novel quad feature pyramid network (Quad-FPN) is proposed for SAR ship detection in this paper. Quad-FPN consists of four unique FPNs, i.e., a DEformable COnvolutional FPN (DE-CO-FPN), a Content-Aware Feature Reassembly FPN (CA-FR-FPN), a Path Aggregation Space Attention FPN (PA-SA-FPN), and a Balance Scale Global Attention FPN (BS-GA-FPN). To confirm the effectiveness of each FPN, extensive ablation studies are conducted. We conduct experiments on five open SAR ship detection datasets, i.e., SAR ship detection dataset (SSDD), Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-Dataset, and high-resolution SAR images dataset (HRSID). Qualitative and quantitative experimental results jointly reveal Quad-FPN’s optimal SAR ship detection performance compared with the other 12 competitive state-of-the-art convolutional neural network (CNN)-based SAR ship detectors. To confirm the excellent migration application capability of Quad-FPN, the actual ship detection in another two large-scene Sentinel-1 SAR images is conducted. Their satisfactory detection results indicate the practical application value of Quad-FPN in marine surveillance.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Anlay Fante ◽  
Mohammed Aliy

Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.


2020 ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Fante Anlay ◽  
Mohammed Aliy

Abstract Background Information: Manual microscopic examination is still the "golden standard" for malaria diagnosis. The challenge in the manual microscopy is the fact that its accuracy, consistency and speed of diagnosis depends on the skill of the laboratory technician. It is difficult to get highly skilled laboratory technicians in the remote areas of developing countries. In order to alleviate this problem, in this paper, we propose and investigate the state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from thick blood slides. Methods: YOLOV3 and YOLOV4 are state-of-the-art object detectors both in terms of accuracy and speed; however, they are not optimized for the detection of small objects such as malaria parasite in microscopic images. To deal with these challenges, we have modified YOLOV3 and YOLOV4 models by increasing the feature scale and by adding more detection layers, without notably decreasing their detection speed. We have proposed one modified YOLOV4 model, called YOLOV4-MOD and two modified models for YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. In addition, we have generated new anchor box scales and sizes by using the K-means clustering algorithm to exploit small object detection learning ability of the models.Results: The proposed modified YOLOV3 and YOLOV4 algorithms are evaluated on publicly available malaria dataset and achieve state-of-the-art accuracy by exceeding the performance of their original versions, Faster R-CNN and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. For 608 x 608 input resolution YOLOV4-MOD achieves the best detection performance among all the other models with mAP of 96.32%. For the same input resolution YOLOV3-MOD2 and YOLOV3-MOD1 achieved mAP of 96.14% and 95.46% respectively. Conclusions: Th experimental results demonstrate that the performance of the proposed modified YOLOV3 and YOLOV4 models are reliable to be applied for detection of malaria parasite from images that can be captured by smartphone camera over the microscope eyepiece. The proposed system can be easily deployed in low-resource setting and it can save lives.


2021 ◽  
Vol 925 (1) ◽  
pp. 012058
Author(s):  
Marza Ihsan Marzuki ◽  
Rinny Rahmania ◽  
Penny Dyah Kusumaningrum ◽  
Rudhy Akhwady ◽  
Daud Saputra Amare Sianturi ◽  
...  

Abstract Detecting fishing boat activity is still a challenge for the biggest archipelago countries, such as Indonesia, to monitor the huge marine area. Space technology using sensors SAR to detect ships has been developed since 1985. However, the cost of using SAR images is one of the barriers to operational aspects, mainly for detecting fishing boats to deter IUU fishing activities. This research aims to evaluate the use of Sentinel 1-SAR imagery for identifying fishing boats from space. We used VIIRS data for validating the purposes. Both data sources could be accessed freely. The object detection process can be derived into three steps: pre-processing, object detection and object validation. We used the constant false alarm rate (CFAR) method to discriminate against objects at sea. To identify fishing vessels, we used the size of the vessels and the intensity of light captured by VIIRS. According to the findings, 21 boats were discovered using sentinel 1-SAR imagery and four boats using VIIRS data based on the the area of interest.


Author(s):  
Haomiao Liu ◽  
Haizhou Xu ◽  
Lei Zhang ◽  
Weigang Lu ◽  
Fei Yang ◽  
...  

Maritime ship monitoring plays an important role in maritime transportation. Fast and accurate detection of maritime ship is the key to maritime ship monitoring. The main sources of marine ship images are optical images and synthetic aperture radar (SAR) images. Different from natural images, SAR images are independent to daylight and weather conditions. Traditional ship detection methods of SAR images mainly depend on the statistical distribution of sea clutter, which leads to poor robustness. As a deep learning detector, RetinaNet can break this obstacle, and the problem of imbalance on feature level and objective level can be further solved by combining with Libra R-CNN algorithm. In this paper, we modify the feature fusion part of Libra RetinaNet by adding a bottom-up path augmentation structure to better preserve the low-level feature information, and we expand the dataset through style transfer. We evaluate our method on the publicly available SAR dataset of ship detection with complex backgrounds. The experimental results show that the improved Libra RetinaNet can effectively detect multi-scale ships through expansion of the dataset, with an average accuracy of 97.38%.


2019 ◽  
Vol 11 (5) ◽  
pp. 531 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chao Wang ◽  
Hong Zhang ◽  
Yingbo Dong ◽  
Sisi Wei

Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method.


2021 ◽  
pp. 1-13
Author(s):  
Junying Chen ◽  
Shipeng Liu ◽  
Liang Zhao ◽  
Dengfeng Chen ◽  
Weihua Zhang

Since small objects occupy less pixels in the image and are difficult to recognize. Small object detection has always been a research difficulty in the field of computer vision. Aiming at the problems of low sensitivity and poor detection performance of YOLOv3 for small objects. AFYOLO, which is more sensitive to small objects detection was proposed in this paper. Firstly, the DenseNet module is introduced into the low-level layers of backbone to enhance the transmission ability of objects information. At the same time, a new mechanism combining channel attention and spatial attention is introduced to improve the feature extraction ability of the backbone. Secondly, a new feature pyramid network (FPN) is proposed to better obtain the features of small objects. Finally, ablation studies on ImageNet classification task and MS-COCO object detection task verify the effectiveness of the proposed attention module and FPN. The results on Wider Face datasets show that the AP of the proposed method is 11.89%higher than that of YOLOv3 and 8.59%higher than that of YOLOv4. All of results show that AFYOLO has better ability for small object detection.


2020 ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Fante Anlay ◽  
Mohammed Aliy

Abstract Background Information: Manual microscopic examination is still the ”golden standard” for malaria diagnosis. The challenge in the manual microscopy is the fact that its accuracy, consistency and speed of diagnosis depends on the skill of the laboratory technician. It is difficult to get highly skilled laboratory technicians in the remote areas of developing countries. In order to alleviate this problem, in this paper, we propose and investigate the state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from thick blood slides. Methods: YOLOV3 and YOLOV4 are state-of-the-art object detectors both in terms of accuracy and speed; however, they are not optimized for the detection of small objects such as malaria parasite in microscopic images. To deal with these challenges, we have modified YOLOV3 and YOLOV4 models by increasing the feature scale and by adding more detection layers, without notably decreasing their detection speed. We have proposed one modified YOLOV4 model, called YOLOV4-MOD and two modified models for YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. In addition, we have generated new anchor box scales and sizes by using the K-means clustering algorithm to exploit small object detection learning ability of the models. Results: The proposed modified YOLOV3 and YOLOV4 algorithms are evaluated on publicly available malaria dataset and achieve state-of-the-art accuracy by exceeding the performance of their original versions, Faster R-CNN and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. For 608 x 608 input resolution YOLOV4-MOD achieves the best detection performance among all the other models with mAP of 96.32%. For the same input resolution YOLOV3-MOD2 and YOLOV3-MOD1 achieved mAP of 96.14% and 95.46% respectively. Conclusions: Th experimental results demonstrate that the performance of the proposed modified YOLOV3 and YOLOV4 models are reliable to be applied for detection of malaria parasite from images that can be captured by smartphone camera over the microscope eyepiece. The proposed system can be easily deployed in low-resource setting and it can save lives.


Sign in / Sign up

Export Citation Format

Share Document