scholarly journals Analysis of the Discrete Theory of Radiative Transfer in the Coupled “Ocean–Atmosphere” System: Current Status, Problems and Development Prospects

2020 ◽  
Vol 8 (3) ◽  
pp. 202 ◽  
Author(s):  
Viktor P. Afanas’ev ◽  
Alexander Yu. Basov ◽  
Vladimir P. Budak ◽  
Dmitry S. Efremenko ◽  
Alexander A. Kokhanovsky

In this paper, we analyze the current state of the discrete theory of radiative transfer. One-dimensional, three-dimensional and stochastic radiative transfer models are considered. It is shown that the discrete theory provides a unique solution to the one-dimensional radiative transfer equation. All approximate solution techniques based on the discrete ordinate formalism can be derived based on the synthetic iterations, the small-angle approximation, and the matrix operator method. The possible directions for the perspective development of radiative transfer are outlined.

2012 ◽  
Vol 5 (1) ◽  
pp. 1543-1573
Author(s):  
S. Gimeno García ◽  
T. Trautmann ◽  
V. Venema

Abstract. To handle complexity to the smallest detail in atmospheric radiative transfer models is in practice unfeasible. On the one hand, the properties of the interacting medium, i.e. the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, esp. for climate modeling and operational remote sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications. Three-dimensional radiation models can deal with much more complexity than the one-dimensional ones providing a more accurate solution of the radiative transfer. In turn, one-dimensional models introduce biases to the radiation results. With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a finer resolution. Performing the radiative transfer within the spatially fine-resolved cloud fields noticeably helps to improve the radiation results. In the framework of this paper, we aim at characterizing cloud heterogeneity effects on radiances and broadband flux densities, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias) and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias). First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic methods greatly reduce or nearly eliminate the reflectivity biases. Secondly, three-dimensional broadband flux densities in the presence of realistic inhomogeneous cloud fields sampled at fine spatial resolutions are calculated and compared to their one-dimensional counterparts at coarser resolutions.


Introduction .–Through the work of Bloch our understanding of the behaviour of electrons in crystal lattices has been much advanced. The principal idea of Bloch’s theory is the assumption that the interaction of a given electron with the other particles of the lattice may be replaced in first approximation by a periodic field of potential. With this model an interpretation of the specific heat, the electrical and thermal conductivity, the magnetic susceptibility, the Hall effect, and the optical properties of metals could be obtained. The advantages and limitations inherent in the assumption of Bloch will be much the same as those encountered when replacing the interaction of the electrons in an atom by a suitable central shielding of the unclear field, as in the work of Thomas and Hartree. In the papers quoted a number of general results were given regarding the behaviour of electrons in any periodic field of potential. To obtain a clearer idea of the details of this behaviour with a view to the application in special problems, however, it appeared worth while to investigate the mechanics of electrons in periodic fields of potential somewhat similar to those met with in practice and of such nature that the energy values W and eigenfunctions Ψ of the wave-equation can actually be computed. It is the purpose of this article to discuss a case where the integration is possible. In Section 1 the energy values and in Section 2 the wave-functions in their dependence on the binding introduced by the potential field are discussed for the one dimensional problem. In Section 3 the matrix elements of the linear momentum, which furnish the electric current associated with the various stationary states, are well as the probability of radiative transitions between these states, are evaluated. In Section 4 the results are extended to the three dimensional case and those features considered which one may expect to find in the case of more general periodic fields of potential. Section 5 deals with some applications to physical problems.


Author(s):  
Rodney Loudon

The theory of the one-dimensional (1D) hydrogen atom was initiated by a 1952 paper but, after more than 60 years, it remains a topic of debate and controversy. The aim here is a critique of the current status of the theory and its relation to relevant experiments. A 1959 solution of the Schrödinger equation by the use of a cut-off at x = a to remove the singularity at the origin in the 1/| x | form of the potential is clarified and a mistaken approximation is identified. The singular atom is not found in the real world but the theory with cut-off has been applied successfully to a range of four practical three-dimensional systems confined towards one dimension, particularly their observed large increases in ground state binding energy. The true 1D atom is in principle restored when the short distance a tends to zero but it is sometimes claimed that the solutions obtained by the limiting procedure differ from those obtained by solution of the basic Schrödinger equation without any cut-off in the potential. The treatment of the singularity by a limiting procedure for applications to practical systems is endorsed.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


1981 ◽  
Vol 42 (19) ◽  
pp. 445-449 ◽  
Author(s):  
A. Fournel ◽  
C. More ◽  
G. Roger ◽  
J.P. Sorbier ◽  
J.M. Delrieu ◽  
...  

Author(s):  
D. Pulgarín ◽  
J. Plaza ◽  
J. Ruge ◽  
J. Rojas

This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.


2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.


Sign in / Sign up

Export Citation Format

Share Document