scholarly journals Application of the Saffir-Simpson Hurricane Wind Scale to Assess Sand Dune Response to Tropical Storms

2020 ◽  
Vol 8 (9) ◽  
pp. 670
Author(s):  
Jean T. Ellis ◽  
Michelle E. Harris ◽  
Mayra A. Román-Rivera ◽  
J. Brianna Ferguson ◽  
Peter A. Tereszkiewicz ◽  
...  

Over one-third of the Earth’s population resides or works within 200 km of the coast. The increasing threat of coastal hazards with predicted climate change will impact many global citizens. Coastal dune systems serve as a natural first line of defense against rising sea levels and coastal storms. This study investigated the volumetric changes of two dune systems on Isle of Palms, South Carolina, USA prior to and following Hurricanes Irma (2017) and Florence (2018), which impacted the island as tropical storms with different characteristics. Irma had relatively high significant wave heights and precipitation, resulting in an average 39% volumetric dune loss. During Florence, a storm where precipitation was low and winds were moderate, net volumetric dune loss averaged 3%. The primary driving force causing dune change during Irma was water (precipitation and storm surge), and during Florence, it was wind (aeolian transport). We suggest that the application of the Saffir-Simpson Hurricane Wind Scale classifications should be reconsidered because different geomorphic responses were measured, despite Irma and Florence both being designated as tropical storms. Site-specific pre- and post-storm studies of the dune morphology and site-specific meteorological measurements of the storm (wind characteristics, storm surge, precipitation) are critically needed.

2021 ◽  
Author(s):  
◽  
Joseph Wellwood

<p>New Zealand’s coastline is rapidly receding. The increased threat of rising sea levels continues to erode the shore line causing extensive and irreparable damage to thousands of coastal properties, often dismantling communities and the kiwi dream of living near the ocean. With global temperatures continuing to rise, all of our coastal communities are at risk. The current measure of response to this issue is through managed retreat, the removal and relocation of all ‘at risk’ buildings in coastal hazard zones. While this approach is successful in preserving the physical structures, it remains an undesirable solution that forces homeowners to abandon their community and the coastline for the safety of higher ground. The retreat is hampered among debate within the effected regions as the forced detachment of long standing communities often results in the loss of ‘sense of place’ that living within a coastal community enables.  This thesis proposes that Haumoana in Hawkes Bay offers the fitting location to introduce an alternative coastal community model that actively responds to the impending hazards whilst retaining the societal poetics. Situated just south of the nearby communities of Te Awanga and Haumoana, two of the most at-risk coastal regions in New Zealand that are currently facing the prospect of dismantlement. The site was specifically chosen due to the fact that erosion is predicted to diminish half its usable land over the next century, this thesis will investigate the potential risks to the respective coastline, the role that this would play in an adaptive community, and the possible design options that can respond and enhance a future sustainable landscape.  This thesis argues that a coastal community can be designed to actively adapt and respond to the threat of erosion rather than being dismantled through retreat; that by adopting design principles that protect the land on which they are placed, the coastal hazards of the region can be lessened; and that an adaptive community model can be achieved whilst retaining the ‘sense of place’ that coastal community’s exhibit.  The thesis proposes that this can be achieved by incorporating and reinforcing natural features of the coast into the architectural design at various scales; accommodating for, and adapting to the imminent threat of erosion; and by invoking principles of sustainable design in company with adaptive planning and resilient design, thereby pushing the standards of coastal planning beyond typical practice.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicole E. Peterson ◽  
Craig E. Landry ◽  
Clark R. Alexander ◽  
Kevin Samples ◽  
Brian P. Bledsoe

Abstract Rising sea levels and growing coastal populations are intensifying interactions at the land-sea interface. To stabilize upland and protect human developments from coastal hazards, landowners commonly emplace hard armoring structures, such as bulkheads and revetments, along estuarine shorelines. The ecological and economic consequences of shoreline armoring have garnered significant attention; however, few studies have examined the extent of hard armoring or identified drivers of hard armoring patterns at the individual landowner level across large geographical areas. This study addresses this knowledge gap by using a fine-scale census of hard armoring along the entire Georgia U.S. estuarine coastline. We develop a parsimonious statistical model that accurately predicts the probability of armoring emplacement at the parcel level based on a set of environmental and socioeconomic variables. Several interacting influences contribute to patterns of shoreline armoring; in particular, shoreline slope and the presence of armoring on a neighboring parcel are strong predictors of armoring. The model also suggests that continued sea level rise and coastal population growth could trigger future increases in armoring, emphasizing the importance of considering dynamic patterns of armoring when evaluating the potential effects of sea level rise. For example, evolving distributions of armoring should be considered in predictions of future salt marsh migration. The modeling approach developed in this study is adaptable to assessing patterns of hard armoring in other regions. With improved understanding of hard armoring distributions, sea level rise response plans can be fully informed to design more efficient scenarios for both urban development and coastal ecosystems.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 131 ◽  
Author(s):  
Zai-Jin You

The mainland coast of China is about 18,000 km long and houses about 70% of China’s largest cities and 50% of its population. For the last few decades, the rapid growth of the Chinese economy has resulted in extensive development of the coastal infrastructure and property, large-scale expansion of coastal ports, excessive reclamation of coastal land, and a significant increase in the coastal population. Previous studies have indicated that tropical cyclones (TCs) have struck the coast of China at a higher frequency and intensity, and TC-induced coastal hazards have resulted in heavy human losses and huge losses to the Chinese coastal economy. In analyzing the long-term and most recent coastal hazard data collected on the coast of China, this study has found that TC-induced storm surges are responsible for 88% of the direct coastal economic losses, while TC-induced large coastal waves have caused heavy loss of human lives, and that the hazard-caused losses are shown to increase spatially from the north to south, peak in the southern coastal sector, and well correlate to storm wave energy flux. The frequency and intensity of coastal hazards on the coast of China are expected to increase in response to future changing TC conditions and rising sea levels. A simple two-parameter conceptual model is also presented for the assessment of coastal inundation and erosion hazards on the coast of China.


Author(s):  
Paul Chinowsky ◽  
Jacob Helman

The national study analyzes sea level rise (SLR) impacts based on 36 different SLR and storm surge scenarios across 5.7 million geographic locations and 3 time periods. Taking an approach based on engineering design guidelines and current cost estimates, the study details projected cost impacts for states, counties, and cities. These impacts are presented from multiple perspectives including total cost, cost per-capita, and cost per-square mile. The purpose of the study is to identify specific locations where infrastructure is vulnerable to rising sea levels. The study finds that Sea Level Rise (SLR) and minimal storm surge is a $400 billion threat to the United States by 2040 that includes a need for at least 50,000 miles of protective barriers. The research is limited in its scope to protecting coastal infrastructure with sea walls. Additional methods exist and may be appropriate in individual situations. The study is original in that it is a national effort to identify infrastructure that is vulnerable as well as the cost associated with protecting this infrastructure.


2019 ◽  
Vol 44 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Tao Ji ◽  
Guosheng Li

There is growing interest in storm surge activity related to catastrophic events and their unintended consequences in terms of casualties and damage around the world and in increasing populations and issues along coastal areas in the context of global warming and rising sea levels. Accordingly, knowledge on storm surge monitoring has progressed significantly in recent years, and this review, focused on monitoring the spatial and temporal variability of storm surges, responds to the need for a synthesis. Three main components are presented in the review: (1) monitoring storm surges from the viewpoint of three effective approaches; (2) understanding the challenges faced by the three monitoring approaches to increase our awareness of monitoring storm surges; (3) identifying three research priorities and orientations to provide new ideas in future storm surge monitoring. From the perspective of monitoring approaches, recent progress was achieved with respect to tide gauges, satellite altimetry and numerical simulation. Storm surge events can nowadays be identified accurately, and the surge heights can be calculated based on long-term tide gauge observations. The changing frequency and intensity of storm surge activity, combined with statistical analysis and climatology, can be used to enable a better understanding of the possible regional or global long-term trends. Compared with tidal observation data, satellite altimetry has the advantage of providing offshore sea level information to an accuracy of 10 cm. In addition, satellite altimetry can provide more effective observations for studying storm surges, such as transient surge data of the deep ocean. Simultaneously, the study of storm surges via numerical simulation has been further developed, mainly reflected in the gradual improvement of simulation accuracy but also in the refinement of comprehensive factors affecting storm surge activity. However, from the above approaches, storm surge activity monitoring cannot fully reflect the spatial and temporal variability of storm surges, especially the spatial changes at a regional or global scale. In particular, compared to global storm surge, tide gauges and satellite altimeters are relatively sparse, and the spatial distribution is extremely uneven, which often seriously restricts the overall understanding of the spatial distribution features of storm surge activity. Numerical models can be used as a tool to overcome the above-mentioned shortcomings for storm surge monitoring, as they provide real-time spatiotemporal features of storm surge events. But long-term numerical hindcast of tides and surges requires an extremely high computational effort. Considering the shortcomings of the above approaches and the impact of climate change, there is no clear approach to remedy the framework for studying the spatial and temporal characteristics of global or regional storm surge activity at a climatic scale. Therefore, we show how new insights or techniques are useful for the monitoring of future crises. This work is especially important in planning efforts by policymakers, coastal managers, civil protection managers and the general public to adapt to climate change and rising sea levels.


2020 ◽  
Author(s):  
Sang-Guk Yum ◽  
Hsi-Hsien Wei ◽  
Sung-Hwan Jang

Abstract. Global warming, one of the most serious aspects of climate change, can be expected to cause rising sea levels. These, in turn, have been linked to unprecedentedly large typhoons that can cause flooding of low-lying land, coastal invasion, seawater flows into rivers and groundwater, rising river levels, and aberrant tides. To prevent loss of life and property damage caused by typhoons, it is crucial to accurately estimate storm surge related risk. This study therefore develops a statistical model for estimating probability model, based on surge data pertaining to Typhoon Maemi, which struck South Korea in 2003. Specifically, estimation of non-exceedance probability models of the typhoon-related storm surge was achieved via clustered separated peaks-over-threshold simulation, while various distribution models were fitted to the empirical data for investigating the risk of storm surge height. The result of this process found that the result of Weibull distribution was better than other distribution model for Typhoon Maemi's peak total water level.


Author(s):  
Ashley Kauppila ◽  
Christopher Bender ◽  
Hunter Bredesen

The Hollywood Lakes area in Hollywood, Florida, and Las Olas Boulevard area of Fort Lauderdale, Florida experience nuisance flooding, or “sunny day” flooding, during extreme high tides. This flooding causes damage to residential and commercial properties and to critical municipal infrastructure. The influences of rising sea levels, extreme rainfall events, and coastal storm surge compound these flooding events, Hollywood and Fort Lauderdale form part of eastern Broward County, a densely populated area in South Florida bordered on the east by the Atlantic Ocean and on the west by the Everglades. Numerous drainage canals connect the Everglades wetlands and the coastal urban area, with typical elevations of 5-10 ft-NAVD. Porous limestone groundwater substrate further contributes to complex local hydrology.


Sign in / Sign up

Export Citation Format

Share Document