scholarly journals Derivation of Engineering Design Criteria for Flow Field Around Intake Structure: A Numerical Simulation Study

2020 ◽  
Vol 8 (10) ◽  
pp. 827
Author(s):  
Lee Hooi Chie ◽  
Ahmad Khairi Abd Wahab

The primary environmental impact caused by seawater intake operation is marine life impingement resulting from the intake velocity. Environmental Protection Agency (EPA) of United State has regulated the use of velocity cap fitted at intake structures to reduce the marine life impingement. The engineering design parameters of velocity cap has not been well explored to date. This study has been set to determine the fundamental relationships between intake velocity and design parameters of velocity cap, using computational fluid dynamic (CFD) model. A set of engineering design criteria for velocity cap design are derived. The numerical evidence yielded in this study show that the velocity cap should be designed with vertical opening (Hvc) and horizontal shelf (ℓvc). The recommended intake opening ratio (Or) shall be 0.36 Vr−0.31, where Or = Hvc/ℓvc and Vr =V0/Vpipe. Vo is the velocity at the intake window and Vpipe is the suction velocity at the intake pipe. The volume ratio (ωr) between the velocity cap (ωvc) and intake tower (ωIT) is recommended at 0.11 Vr−1.23. The positive outlooks that yielded from this study can be served as a design reference for velocity cap to mitigate the detrimental impacts from the existing intake structure.

Author(s):  
Jerome Hall ◽  
Daniel Turner

The conception, development, and adoption of early AASHO highway design criteria are documented. Examining the early efforts states used to select a design vehicle and develop horizontal curve design criteria illustrates why AASHO’s leadership was necessary. AASHO’s slow and somewhat haphazard criteria development, and the disparity from state to state, demonstrated the need for a national consensus in highway design parameters. AASHO’s role in providing these criteria is outlined through its initial development of policy booklets, followed by its 1954 publication of the landmark Blue Book. The processes by which nine states adopted the AASHO guidance are briefly reviewed. In several cases, the AASHO policy was embraced immediately, and in others it was accepted slowly as states clung to their independent design processes and only gradually updated their design criteria. A few simple conclusions are drawn about the development and adoption process, particularly as it may relate to tomorrow’s highway design criteria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farideh Haghighi ◽  
Zahra Talebpour ◽  
Amir Sanati-Nezhad

AbstractFlow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.


1977 ◽  
Vol 21 (1) ◽  
pp. 68-72
Author(s):  
S. J. Morrissey ◽  
A. C. Bittner

The standards for vibration in MIL-STD-1472B, Human Engineering Design Criteria for Systems, Equipment, and Facilities, were compared to data from the literature and were found to be inadequate. Families of isodecrement performance curves for tracking performance with various combinations of acceleration and frequency were derived for vertical (z-axis) vibrations. A similar family of isodecrement performance curves was derived for percentage decreases in number-reading accuracy for vertical (z-axis) vibrations. These findings were used to make recommendations for changes to MIL-STD-1472B for predicting and identifying excessive work station environments.


1965 ◽  
Vol 9 (02) ◽  
pp. 56-65
Author(s):  
Joseph L. Neuringer ◽  
Eugene Migotsky ◽  
James H. Turner ◽  
Robert M. Haag

In Part 3, the nature of the electromechanically induced motions inside the compressor both of the fluid conductor and of the pumped fluid when the electromechanical coupling is weak, i.e., in the limit of small magnetic Reynolds number, is investigated. The analysis predicts the development of a constant pressure gradient in the pumped fluid when the condition is imposed that the time-average axial mass flow across the conducting fluid annulus is zero. In Part 4, a preliminary feasibility study is made to determine whether the induction compressor has the potential to provide the pressure rise required to propel large and small undersea craft by means of jet propulsion systems for reasonable power and current-sheet inputs. Also determined here are the geometric scaling laws for the appropriate operating and design parameters.


Author(s):  
Alessandra Cuneo ◽  
Alberto Traverso ◽  
Shahrokh Shahpar

In engineering design, uncertainty is inevitable and can cause a significant deviation in the performance of a system. Uncertainty in input parameters can be categorized into two groups: aleatory and epistemic uncertainty. The work presented here is focused on aleatory uncertainty, which can cause natural, unpredictable and uncontrollable variations in performance of the system under study. Such uncertainty can be quantified using statistical methods, but the main obstacle is often the computational cost, because the representative model is typically highly non-linear and complex. Therefore, it is necessary to have a robust tool that can perform the uncertainty propagation with as few evaluations as possible. In the last few years, different methodologies for uncertainty propagation and quantification have been proposed. The focus of this study is to evaluate four different methods to demonstrate strengths and weaknesses of each approach. The first method considered is Monte Carlo simulation, a sampling method that can give high accuracy but needs a relatively large computational effort. The second method is Polynomial Chaos, an approximated method where the probabilistic parameters of the response function are modelled with orthogonal polynomials. The third method considered is Mid-range Approximation Method. This approach is based on the assembly of multiple meta-models into one model to perform optimization under uncertainty. The fourth method is the application of the first two methods not directly to the model but to a response surface representing the model of the simulation, to decrease computational cost. All these methods have been applied to a set of analytical test functions and engineering test cases. Relevant aspects of the engineering design and analysis such as high number of stochastic variables and optimised design problem with and without stochastic design parameters were assessed. Polynomial Chaos emerges as the most promising methodology, and was then applied to a turbomachinery test case based on a thermal analysis of a high-pressure turbine disk.


Author(s):  
Liang Zhu ◽  
David Kazmer

Abstract A performance-based representation is presented, which uses the Performance Orientation Chart (POC) to aid the designer throughout an interactive design process. Assuming that all performance attributes can be expressed as functions of the design parameters, three types of graphical matrix are shown in the POC: 1) The design form depicts the performance attributes varying with the correspondent design parameters; 2) The performance dependency addresses the trade-off information among the multiple specifications based on Pareto optimal solutions; 3) The parameter constraint space defines the feasible region of the design, parameters within the, active specification limits. Guided by these graphical matrices, the designer can interactively develop the design solution to satisfy multiple specifications. The methodology was applied to a practical design problem to explicate how the POC can help the designer acquire a satisfying design solution with extensive confidence. Finally, the discussion, indicates that the performance-based representation is significantly compatible with other current engineering design methodologies.


1980 ◽  
Author(s):  
David R. Eike ◽  
Thomas B. Malone ◽  
Stephen A. Fleger ◽  
Jimmie H. Johnson

1982 ◽  
Vol 45 (1) ◽  
pp. 19-22 ◽  
Author(s):  
M. E. ANDERSON ◽  
R. T. MARSHALL ◽  
W. C. STRINGER ◽  
H. D. NAUMANN

Our objective was to develop basic design criteria for use in fabricating a functional chamber for a red meat carcass cleaning unit. Emphasis was placed on eliminating the doors. A model carcass cleaning chamber was constructed to test effects of selected design parameters on direction and velocity of airflow. Based on data from the tests using the model, a full-scale chamber with no doors was designed, fabricated, and installed in a commercial packing plant for testing. The air moves into the chamber at both the entrance and the exit. This movement of air into the chamber prevents water droplets entrained in the air from escaping into the slaughtering area and causing condensation on the walls and roof.


Sign in / Sign up

Export Citation Format

Share Document