scholarly journals 3-Dimensional Modeling and Attitude Control of Multi-Joint Autonomous Underwater Vehicles

2021 ◽  
Vol 9 (3) ◽  
pp. 307
Author(s):  
Lin Yu ◽  
Qinghao Meng ◽  
Hongwei Zhang

To achieve rapid and flexible vertical profile exploration of deep-sea hybrid structures, a multi-joint autonomous underwater vehicle (MJ-AUV) with orthogonal joints was designed. This paper focuses on the 3-dimensional (3D) modeling and attitude control of the designed vehicle. Considering the situation of gravity and buoyancy imbalance, a 3D model of the MJ-AUV was established according to Newton’s second law and torque balance principle. And then the numerical simulation was carried out to verify the credibility of the model. To solve the problems that the pitch and yaw attitude of the MJ-AUV are coupled and the disturbance is unknown, a linear quadratic regulator (LQR) decoupling control method based on a linear extended state observer (LESO) was proposed. The system was decoupled into pitch and yaw subsystems, treated the internal forces and external disturbances of each subsystem as total disturbances, and estimated the total disturbances with LESO. The control law was divided into two parts. The first part was the total disturbance compensator, while the second part was the linear state feedback controller. The simulation results show that the overshoot of the controlled system in the dynamic process is nearly 0 rad, reaching the design value very smoothly. Moreover, when the controlled system is in a stable state, the control precision is within 0.005%.

2021 ◽  
Vol 163 (A1) ◽  
pp. 87-100
Author(s):  
B K Tiwari ◽  
R Sharma

Autonomous Underwater Vehicles (AUVs) are widely used for marine survey, in both the coastal and deep sea areas and they are applicable to both civil and defense applications. They are pre-programmed and can operate without human intervention and this makes them attractive to many marine industries. A concern with AUVs is the high energy consumption required by their thrusters for depth control, buoyancy change and manoeuvrability and that adversely affects their performance and endurance. This paper presents the design and development of novel stand-alone variable buoyancy system for AUVs and investigates its performance through numerical and experimental investigations. The design idea is based upon the Pump Driven Variable Buoyancy System (PDVBS) and uses a hydraulic based method to control the buoyancy. The VBS is integrated into a medium sized AUV of 3 m length and the performance of the vehicle in vertical plane is investigated. The results are presented for a buoyancy change requirement of 5 kg and a diaphragm type positive displacement pump, with a buoyancy change rate of 5 kg/min, is utilized. Depth control performance of the AUV and its hovering capabilities, at a desired depth of 60 m using the Linear Quadratic Regulator (LQR) controller, are analysed in detail. Finally, the results indicate that the designed and developed VBS is effective in changing the buoyancy and controlling the heave velocity. These two features are expected to provide higher endurance and better performance in AUVs involved in rescue/attack operations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C. G. de Souza

The design of the spacecraft Attitude Control System (ACS) becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI) where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.


2015 ◽  
Vol 76 (12) ◽  
Author(s):  
Fadzilah Hashim ◽  
Mohd Yusoff Mashor ◽  
Siti Maryam Sharun

This paper presents a study on the estimator based on Linear Quadratic Regulator (LQR) control scheme for Innovative Satellite (InnoSAT). By using LQR control scheme, the controller and the estimator has been derived for state space form in all three axes to stabilize the system’s performance. This study starts by converting the transfer functions of attitude control into state space form.  Then, the step continues by finding the best value of weighting matrices of LQR in order to obtain the best value of controller gain, K. After that, the best value of L is obtained for the estimator gain. The value of K and L is combined in forming full order compensator and in the same time the reduced order compensator is also formed. Lastly, the performance of full order compensator is compared to reduced order compensator. From the simulation, results indicate that both types of estimators have presented good stability and tracking performance. However, reduced order estimator has simpler equation and faster convergence to zero than the full order estimator. This property is very important in developing a satellite attitude control for real-time implementation.


Author(s):  
Dechrit Maneetham ◽  
Petrus Sutyasadi

This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed.


2019 ◽  
Vol 9 (7) ◽  
pp. 1376
Author(s):  
Peng Zhang ◽  
Yunhua Li

The objective of this paper is to design a pump that can match its delivery pressure to the aircraft load. Axial piston pumps used in airborne hydraulic systems are required to work in a constant pressure mode setting based on the highest pressure required by the aircraft load. However, the time using the highest pressure working mode is very short, which leads to a lot of overflow lose. This study is motivated by this fact. Pressure continuous regulation electrohydraulic proportional axial piston pump is realized by combining a dual-pressure piston pump with electro-hydraulic proportional technology, realizing the match between the delivery pressure of the pump and the aircraft load. The mathematical model is established and its dynamic characteristics are analyzed. The control methods such as a proportional integral derivative (PID) control method, linear quadratic regulator (LQR) based on a feedback linearization method and a backstepping sliding control method are designed for this nonlinear system. It can be seen from the result of simulation experiments that the requirements of pressure control with a pump are reached and the capacity of resisting disturbance of the system is strong.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yun Haitao ◽  
Zhao Yulan ◽  
Liu Zunnian ◽  
Hao Kui

Based on the mathematical model of fuel cell hybrid vehicle (FCHV) proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR) algorithm. A Kalman Filter (KF) observer is introduced to estimate state of charge (SOC) of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual test are utilized to demonstrate this new approach.


2015 ◽  
Vol 69 (3) ◽  
pp. 593-612 ◽  
Author(s):  
Bing Sun ◽  
Daqi Zhu ◽  
Simon X. Yang

In this paper, for the over-actuated Autonomous Underwater Vehicle (AUV) system, a novel tracking controller with thruster fault accommodation is proposed. Firstly, a cascaded control method is proposed for AUV robust tracking control. Then, we deal with the tracking control problem when one or more thrusters are completely or partly malfunctioning. Different control strategies are used to reallocate the thruster forces. For the cases that thrusters are partly malfunctioning, a weighted pseudo-inverse is firstly used to generate the normalised thruster forces. When the normalised thruster forces are out of maximum limits, the Quantum-behaviour Particle Swarm Optimisation (QPSO) is used for the restricted usage of the faulty thruster and to find the solution of the control reallocation problem within the limits. Compared with the weighted pseudo-inverse method, the QPSO algorithm does not need truncation or scaling to ensure the feasibility of the solution due to its particle search in the feasible solution space. The proposed controller is implemented in order to evaluate its performance in different faulty situations and its efficiency is demonstrated through simulation results.


2011 ◽  
Vol 110-116 ◽  
pp. 4977-4984 ◽  
Author(s):  
R.A. Khoshrooz ◽  
M.A.D. Vahid ◽  
M. Mirshams ◽  
M.R. Homaeinezhad ◽  
A.H. Ahadi

This paper presents a method to solve the Evolutionary Algorithm (EA) problems for optimal tuning of the Proportional-Deferential (PD) controller parameters. The major efficiency of the proposed method is the Genetic Algorithm (GA) stuck avoidance as well an appropriate estimation for GA lower and upper bounds. Also by this method for the Particle Swarm Optimization (PSO) methodology the initial choice of the controller parameters can be fulfilled to achieve the acceptable performance accuracies. For both GA and PSO methods, the Linear Quadratic Regulator (LQR) obtained trend is used as the reference for the determination of the aforementioned bounds and initial guess. The presented algorithm was applied to regulate a PD controller for the attitude control of a virtual satellite and also with Hardware-in-the-loop (HIL) reaction wheels. Heavy burden trying and error was eliminated from the PD controller design which can be mentioned as the important merit of the presented study.


Author(s):  
István Varga

The paper investigates a traffic-responsive control method applicable at isolated signalized intersections. The proposed strategy involves three basic parts: a traffic model, a reconfigurable regulator, and a congestion detection filter. Road traffic dynamics is modeled by the well-known store-and-forward approach. The controller is based on the efficient Linear Quadratic Regulator algorithm. The filter is designed by using the modified version (for discrete time case) of the Fundamental Problem of Residual Generation. The main achievement of the system is the ability to deal with a time-varying model parameter, namely the saturation flow rate of the road links. To this end, an error term is estimated continuously by appropriate fault detection algorithm. The predicted error term is further used by the reconfigurable controller which finally aims to mitigate the number of vehicles waiting at the stop line, i.e. the delay caused by the intersection. A simulation study is also carried out to demonstrate the effectiveness of the controller extended by congestion detection filter.


Author(s):  
Y Ochi

The loss of an aircraft's primary flight controls can lead to a fatal accident. However, if the engine thrust is available, controllability and safety can be retained. This article describes flight control using engine thrust only when an aircraft has lost all primary flight controls. This is a kind of flight control reconfiguration. For safe return, the aircraft must first descend to a landing area, decelerate to a landing speed, and then be capable of precise flight control for approach and landing. For these purposes, two kinds of controllers are required: a controller for descent and deceleration and a controller for approach and landing. The former controller is designed for longitudinal motion using a model-following control method, based on a linear quadratic regulator. The latter is designed by an H∞ state-feedback control method for both longitudinal and lateral-directional motions. Computer simulation is conducted using linear models of the Boeing 747. The results indicate that flight path control, including approach and landing, is possible using thrust only; however, speed control proves more difficult. However, if the horizontal stabilizer is available, the airspeed can be reduced to a safe landing speed.


Sign in / Sign up

Export Citation Format

Share Document