Numerical and Experimental Analyses of a Variable Buoyancy System for an Autonomous Underwater Vehicle

2021 ◽  
Vol 163 (A1) ◽  
pp. 87-100
Author(s):  
B K Tiwari ◽  
R Sharma

Autonomous Underwater Vehicles (AUVs) are widely used for marine survey, in both the coastal and deep sea areas and they are applicable to both civil and defense applications. They are pre-programmed and can operate without human intervention and this makes them attractive to many marine industries. A concern with AUVs is the high energy consumption required by their thrusters for depth control, buoyancy change and manoeuvrability and that adversely affects their performance and endurance. This paper presents the design and development of novel stand-alone variable buoyancy system for AUVs and investigates its performance through numerical and experimental investigations. The design idea is based upon the Pump Driven Variable Buoyancy System (PDVBS) and uses a hydraulic based method to control the buoyancy. The VBS is integrated into a medium sized AUV of 3 m length and the performance of the vehicle in vertical plane is investigated. The results are presented for a buoyancy change requirement of 5 kg and a diaphragm type positive displacement pump, with a buoyancy change rate of 5 kg/min, is utilized. Depth control performance of the AUV and its hovering capabilities, at a desired depth of 60 m using the Linear Quadratic Regulator (LQR) controller, are analysed in detail. Finally, the results indicate that the designed and developed VBS is effective in changing the buoyancy and controlling the heave velocity. These two features are expected to provide higher endurance and better performance in AUVs involved in rescue/attack operations.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sheng-Ping Hsu ◽  
Tzong-Shi Liu

During a constant depth maneuver of an autonomous underwater vehicle (AUV), its pitch attitude and stern plane deflections create forces and moments to achieve equilibrium in the vertical plane. If an AUV has a proportional controller only in its depth control loop, then different weights or centers of gravity will cause different steady-state depth errors at trimmed conditions. In general, a steady-state depth error can be eliminated by adding an integral controller in the depth control loop. However, an improper integrator may lead to a bad transient response, even though the steady-state depth error can finally be eliminated. To remove the steady-state depth error, this study proposes methods that adjust the depth command and add a switching integral controller in the depth control loop. Simulation results demonstrate that the steady-state depth error can be eliminated and the transient response can be improved.


2021 ◽  
Vol 9 (3) ◽  
pp. 307
Author(s):  
Lin Yu ◽  
Qinghao Meng ◽  
Hongwei Zhang

To achieve rapid and flexible vertical profile exploration of deep-sea hybrid structures, a multi-joint autonomous underwater vehicle (MJ-AUV) with orthogonal joints was designed. This paper focuses on the 3-dimensional (3D) modeling and attitude control of the designed vehicle. Considering the situation of gravity and buoyancy imbalance, a 3D model of the MJ-AUV was established according to Newton’s second law and torque balance principle. And then the numerical simulation was carried out to verify the credibility of the model. To solve the problems that the pitch and yaw attitude of the MJ-AUV are coupled and the disturbance is unknown, a linear quadratic regulator (LQR) decoupling control method based on a linear extended state observer (LESO) was proposed. The system was decoupled into pitch and yaw subsystems, treated the internal forces and external disturbances of each subsystem as total disturbances, and estimated the total disturbances with LESO. The control law was divided into two parts. The first part was the total disturbance compensator, while the second part was the linear state feedback controller. The simulation results show that the overshoot of the controlled system in the dynamic process is nearly 0 rad, reaching the design value very smoothly. Moreover, when the controlled system is in a stable state, the control precision is within 0.005%.


Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Author(s):  
G. Yakubu ◽  
G. Sani ◽  
S. B. Abdulkadir ◽  
A. A.Jimoh ◽  
M. Francis

Full car passive and active damping system mathematical model was developed. Computer simulation using MATLAB was performed and analyzed. Two different road profile were used to check the performance of the passive and active damping using Linear Quadratic Regulator controller (LQR)Road profile 1 has three bumps with amplitude of 0.05m, 0.025 m and 0.05 m. Road profile 2 has a bump with amplitude of 0.05 m and a hole of -0.025 m. For all the road profiles, there were 100% amplitude reduction in Wheel displacement, Wheel deflection, Suspension travel and body displacement, and 97.5% amplitude reduction in body acceleration for active damping with LQR controller as compared to the road profile and 54.0% amplitude reduction in body acceleration as compared to the passive damping system. For the two road profiles, the settling time for all the observed parameters was less than two (2) seconds. The present work gave faster settling time for mass displacement, body acceleration and wheel displacement.


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


Author(s):  
Ishan Chawla ◽  
Ashish Singla

AbstractFrom the last five decades, inverted pendulum (IP) has been considered as a benchmark problem in the control literature due to its inherit nature of instability, non-linearity and underactuation. Its applicability in wide range of practical systems, demands the need of a robust controller. It is found in the literature that wide range of controllers had been tested on this problem, out of which the most robust being sliding mode controller while the most optimal being linear quadratic regulator (LQR) controller. The former has a problem of discontinuity and chattering, while the latter lacks the property of robustness. To address the robustness issue in LQR controller, this paper proposes a novel robust LQR-based adaptive neural based fuzzy inference system controller, which is a hybrid of LQR and fuzzy inference system. The proposed controller is designed and implemented on rotary inverted pendulum. Further, to validate the robustness of proposed controller to parametric uncertainties, pendulum mass is varied. Simulation and experimental results show that as compared to LQR controller, the proposed controller is robust to variations in pendulum mass and has shown satisfactory performance.


2015 ◽  
Vol 761 ◽  
pp. 227-232 ◽  
Author(s):  
Tang Teng Fong ◽  
Zamberi Jamaludin ◽  
Ahmad Yusairi Bani Hashim ◽  
Muhamad Arfauz A. Rahman

The control of rotary inverted pendulum is a case of classical robust controller design of non-linear system applications. In the control system design, a precise system model is a pre-requisite for an enhanced and optimum control performance. This paper describes the dynamic system model of an inverted pendulum system. The mathematical model was derived, linearized at the upright equilibrium points and validated using non-linear least square frequency domain identification approach based on measured frequency response function of the physical system. Besides that, a linear quadratic regulator (LQR) controller was designed as the balancing controller for the pendulum. An extensive analysis was performed on the effect of the weighting parameter Q on the static time of arm, balance time of pendulum, oscillation, as well as, response of arm and pendulum, in order to determine the optimum state-feedback control vector, K. Furthermore, the optimum control vector was successfully applied and validated on the physical system to stabilize the pendulum in its upright position. In the experimental validation, the LQR controller was able to keep the pendulum in its upright position even in the presence of external disturbance forces.


Author(s):  
Antonio Villalba-Herreros ◽  
Teresa J. Leo ◽  
Ricardo Abad

Autonomous underwater vehicles (AUVs) are versatile machines capable of more and more complex missions including the offshore industry. The ability to carry out some missions relies on the endurance the vehicle is provided with. In this sense, fuel cells are found to be very adequate devices to enlarge AUVs endurance because of the high energy density and specific energy they can achieve, but the application of fuel cell technology to AUVs faces specific challenges that need to be overcome. The present work describes the conceptual design process of a typical AUV powered by a direct methanol fuel cell. Methanol is a high available fuel and its handling system is simple. The obtained results indicate that the manufacturing of such a vehicle is possible within several constrains, being the carbon dioxide treatment system the most critical component of the energy plant. The projected vehicle is compared to current vehicles on the market showing the improved endurance.


Author(s):  
Dechrit Maneetham ◽  
Petrus Sutyasadi

This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed.


Sign in / Sign up

Export Citation Format

Share Document