scholarly journals Machine Learning Classification Algorithms for Predicting Karenia brevis Blooms on the West Florida Shelf

2021 ◽  
Vol 9 (9) ◽  
pp. 999
Author(s):  
Marvin F. Li ◽  
Patricia M. Glibert ◽  
Vyacheslav Lyubchich

Harmful algal blooms (HABs), events that kill fish, impact human health in multiple ways, and contaminate water supplies, have increased in frequency, magnitude, and impacts in numerous marine and freshwaters around the world. Blooms of the toxic dinoflagellate Karenia brevis have resulted in thousands of tons of dead fish, deaths to many other marine organisms, numerous respiratory-related hospitalizations, and tens to hundreds of millions of dollars in economic damage along the West Florida coast in recent years. Four types of machine learning algorithms, Support Vector Machine (SVM), Relevance Vector Machine (RVM), Naïve Bayes classifier (NB), and Artificial Neural Network (ANN), were developed and compared in their ability to predict these blooms. Comparing the 21 year monitoring dataset of K. brevis abundance, RVM and NB were found to have better skills in bloom prediction than the other two approaches. The importance of upwelling-favorable northerly winds in increasing K. brevis probability, and of onshore westerly winds in preventing blooms from dispersing offshore, were quantified using RVM, and all models were used to explore the importance of large river flows and the nutrients they supply in regulating blooms. These models provide new tools for management of these devastating algal blooms.

2016 ◽  
Vol 8 (5) ◽  
pp. 377 ◽  
Author(s):  
Ahmed El-habashi ◽  
Ioannis Ioannou ◽  
Michelle Tomlinson ◽  
Richard Stumpf ◽  
Sam Ahmed

Author(s):  
V. Vinodhini ◽  
Akula Vishalakshi ◽  
G. Naga Chandrika ◽  
S. Sankar ◽  
Somula Ramasubbareddy

Vasovagal syncope (VVS) refers to fainting of people with a drop in blood flow to the brain more serious disease in paraplegia patients. Precognitive diagnoses are characterized by lightheadedness, nausea, severe fatigue, and an elevated heart rate. As a result, it’s important to seek care as soon as possible after experiencing syncope. Since receiving a correct diagnosis and appropriate care, the majority of patients may avoid complications with syncope. Syncope appears to be a sign of COVID 19 in people with coronary artery disease. Furthermore, a sudden heart attack might result in acute syncope. In a few circumstances, machine learning classification techniques may not be precise. For paraplegia patients, prediction vasovagal syncope needs more precise results in order to save their lives. The aim of this paper is to use the ensemble technique to improve the accuracy of conventional machine learning algorithms. EEG (ElectroEncephaloGram) brainwave dataset from kaggle is used to implement it. The accuracy of the proposed AWET algorithm is 82%. It improves the accuracy by 17% compare to Support Vector Machine, Random Forest, Naive Bayes, and MultiLayer Perceptron classifiers.


Author(s):  
Ahmed T. Shawky ◽  
Ismail M. Hagag

In today’s world using data mining and classification is considered to be one of the most important techniques, as today’s world is full of data that is generated by various sources. However, extracting useful knowledge out of this data is the real challenge, and this paper conquers this challenge by using machine learning algorithms to use data for classifiers to draw meaningful results. The aim of this research paper is to design a model to detect diabetes in patients with high accuracy. Therefore, this research paper using five different algorithms for different machine learning classification includes, Decision Tree, Support Vector Machine (SVM), Random Forest, Naive Bayes, and K- Nearest Neighbor (K-NN), the purpose of this approach is to predict diabetes at an early stage. Finally, we have compared the performance of these algorithms, concluding that K-NN algorithm is a better accuracy (81.16%), followed by the Naive Bayes algorithm (76.06%).


2021 ◽  
Author(s):  
Coralie Joucla ◽  
Damien Gabriel ◽  
Emmanuel Haffen ◽  
Juan-Pablo Ortega

Research in machine-learning classification of electroencephalography (EEG) data offers important perspectives for the diagnosis and prognosis of a wide variety of neurological and psychiatric conditions, but the clinical adoption of such systems remains low. We propose here that much of the difficulties translating EEG-machine learning research to the clinic result from consistent inaccuracies in their technical reporting, which severely impair the interpretability of their often-high claims of performance. Taking example from a major class of machine-learning algorithms used in EEG research, the support-vector machine (SVM), we highlight three important aspects of model development (normalization, hyperparameter optimization and cross-validation) and show that, while these 3 aspects can make or break the performance of the system, they are left entirely undocumented in a shockingly vast majority of the research literature. Providing a more systematic description of these aspects of model development constitute three simple steps to improve the interpretability of EEG-SVM research and, in fine, its clinical adoption.


2021 ◽  
Vol 9 (3) ◽  
pp. 283
Author(s):  
Rafaela C. Cruz ◽  
Pedro Reis Costa ◽  
Susana Vinga ◽  
Ludwig Krippahl ◽  
Marta B. Lopes

Harmful algal blooms (HABs) are among the most severe ecological marine problems worldwide. Under favorable climate and oceanographic conditions, toxin-producing microalgae species may proliferate, reach increasingly high cell concentrations in seawater, accumulate in shellfish, and threaten the health of seafood consumers. There is an urgent need for the development of effective tools to help shellfish farmers to cope and anticipate HAB events and shellfish contamination, which frequently leads to significant negative economic impacts. Statistical and machine learning forecasting tools have been developed in an attempt to better inform the shellfish industry to limit damages, improve mitigation measures and reduce production losses. This study presents a synoptic review covering the trends in machine learning methods for predicting HABs and shellfish biotoxin contamination, with a particular focus on autoregressive models, support vector machines, random forest, probabilistic graphical models, and artificial neural networks (ANN). Most efforts have been attempted to forecast HABs based on models of increased complexity over the years, coupled with increased multi-source data availability, with ANN architectures in the forefront to model these events. The purpose of this review is to help defining machine learning-based strategies to support shellfish industry to manage their harvesting/production, and decision making by governmental agencies with environmental responsibilities.


Author(s):  
Vatsal Gupta and Saurabh Gautam

Image recognition is one of the core disciplines in Computer Vision. It is one of the most widely researched topics of the last few decades. Many advances in image recognition in the past decade, has made it one of the most efficient and powerful disciplines of all, having its applications in every sector including Finance, Healthcare, Security services, Agriculture and many more. Feature extraction is an integral part of image recognition. It helps in training the model more efficiently and with a higher accuracy, by getting rid of any unwanted or unnecessary features, thus reducing the dimensionality of the input image. This also helps in reducing the computational resources required by the algorithm to train, thus making it affordable for people with low end setups. Here we compare the accuracies of different machine learning classification algorithms, and their training times, with and without using feature Extraction. For the purpose of extracting features, a convolutional neural network was used. The model was trained and tested on the data of 12 classes containing a total of 2,175 images. For comparisons, we chose the Logistic regression, K-Nearest Neighbors Classifier, Random forest Classifier, and Support Vector Machine Classifier.


The process of discovering and analyzing the customer feedback using Natural Language Processing (NLP) is said to be sentiment analysis. Based on the surge over the concept of rating level in sentiment analysis, sentiment is utilized as an attribute for certain aspects or features that get expressed and more attention are provided to the problem of detecting the customer reviews. Despite the wide use and popularity of some methods, a better technique for identifying the polarity of a text data is hard to find. Machine learning has recently attracted attention as an approach for sentiment analysis. This work extends the idea of evaluating the performance of various Machine Learning (ML) classifiers namely logistic regression, Naive Bayes, Support Vector Machine (SVM) and Neural Network (NN).To show their effectiveness in sentiment mining of customer product reviews, the customer feedback has been collected from Grocery and Gourmet Food. Nearly 90 thousands customers feedback reviews of various product related categories namely Product ID, rating, review test, review time reviewer ID and reviewer name are used in this analysis. The performance of the classifiers is measured in terms of accuracy, specificity and sensitivity. From the experimental results, the better machine learning classification algorithm is proposed for sentiment mining using online shopping customer review data.


Sign in / Sign up

Export Citation Format

Share Document