scholarly journals Study on Hydrodynamic Coefficients of a Submarine Piggyback Pipeline under the Action of Waves and Current

2021 ◽  
Vol 9 (10) ◽  
pp. 1118
Author(s):  
Xiaofei Cheng ◽  
Jun Yang ◽  
Tiaojian Xu ◽  
Qianyuan Xu

In this study, physical model tests are used to investigate the effects of a varying number of wave and current parameters, the gap ratios between the pipeline and seabed, the spacing ratios between the two pipelines and the diameter ratios on the hydrodynamic coefficients of the large, small pipeline and pipeline system (bundle) in a piggyback configuration under the combined action of waves and current. The results show that, compared with the pure wave field, the existence of the steady current will lead to a decrease in hydrodynamic coefficients. In addition, the results indicate clear differences between the hydrodynamic coefficients of the large pipeline, small pipeline and piggyback pipeline system. The experimental results on hydrodynamic coefficients can be used as an important basis for the safety design of a submarine piggyback pipeline.

Author(s):  
Liquan Xie ◽  
Shuguang Liu

We propose a new countermeasure to protect sand beds from erosion, called mattress-curtain sets. Physical model tests in a rectangular flume with suspended sediments were carried out to investigate stability of the sandbed around a mattress-curtain set, and the working mechanism of a mattress-curtain set is discussed. Moreover, based on the experimental results and simulations with software FLUENT, the interactions between sand beds and near bed flow were investigated when a mattress-curtain set was installed on the sand beds. The results show that the stability of sand beds is closely controlled by the seepage under the fabricated mattress, and is affected by liquefaction, excess pore pressure buildups in the sand beds when subjected to changing flow or wave current.


1969 ◽  
Vol 24 (10) ◽  
pp. 1449-1457
Author(s):  
H. Klingenberg ◽  
F. Sardei ◽  
W. Zimmermann

Abstract In continuation of the work on interaction between shock waves and magnetic fields 1,2 the experiments reported here measured the atomic and electron densities in the interaction region by means of an interferometric and a spectroscopic method. The transient atomic density was also calculated using a one-dimensional theory based on the work of Johnson3 , but modified to give an improved physical model. The experimental results were compared with the theoretical predictions.


Author(s):  
Jose A. GONZALEZ-ESCRIVA ◽  
Josep R. MEDINA ◽  
Joaquin M. GARRIDO

ARJ-R caissons are based on the "long-circuit" concept (Medina et al, 2016) that allows the extension of the destructive wave interference mechanism to mitigate low frequency oscillations without enlarging the width of the caisson. The performance of the ARJ-R caissons is referred to its reflection coefficient (Cr) which was obtained through large-scale physical model tests (Gonzalez-Escriva et al, 2018). In this paper, the effectiveness of Anti-Reflective Jarlan-type structures for Port Resonance mitigation (ARJ-R) has been assessed numerically for the port of Denia (Spain). ARJ-R structures are constructible, with similar dimensions as conventional vertical quay caissons and with a similar cost (15percent more than conventional vertical caisson).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/LomQEVpvjik


2012 ◽  
Vol 1 (33) ◽  
pp. 5 ◽  
Author(s):  
Hernan Fernandez ◽  
Gregorio Iglesias ◽  
Rodrigo Carballo ◽  
Alberte Castro ◽  
Marcos Sánchez ◽  
...  

The development of efficient, reliable Wave Energy Converters (WECs) is a prerequisite for wave energy to become a commercially viable energy source. Intensive research is currently under way on a number of WECs, among which WaveCat©—a new WEC recently patented by the University of Santiago de Compostela. In this sense, this paper describes the WaveCat concept and its ongoing development and optimization. WaveCat is a floating WEC intended for operation in intermediate water depths (50–100 m). Like a catamaran, it consists of two hulls—from which it derives its name. The difference with a conventional catamaran is that the hulls are not parallel but convergent; they are joined at the stern, forming a wedge in plan view. Physical model tests of a 1:30 model were conducted in a wave tank using both regular and irregular waves. In addition to the waves and overtopping rates, the model displacements were monitored using a non-intrusive system. The results of the physical model tests will be used to validate the 3D numerical model, which in turn will be used to optimize the design of WaveCat for best performance under a given set of wave conditions.


Author(s):  
Wouter Ockeloen ◽  
Coen Kuiper ◽  
Sjoerd van den Steen

The 'Afsluitdijk' is a 32 km enclosure dam which separates the Wadden sea and the Lake IJssel. The dam currently undergoes a major rehabilitation to meet the requirements with regard to water safety. The Dutch Ministry of infrastructure and Water Management (Rijkswaterstaat division) has commissioned Levvel, a consortium of BAM, Van Oord and Rebel, to prepare the design and carry out the reconstruction of the dam including sluices and highway. The project includes reinforcement of the armour layers and wave overtopping reduction. As part of the contract Rijkswaterstaat prescribed the contractor (Levvel) to verify the design with large scale physical model tests (min. 1:3 scale). These tests were carried out in the Delta Flume of Deltares. Prior to the large scale tests, smaller scale tests (1:20) have been carried out to optimize the design with regard to armour stability and wave overtopping. The research described here focuses on the wave overtopping.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kPga0wVCCIE


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yong Zhang ◽  
Zhiguo Cao ◽  
Xiaomeng Shi

The cement-plaster bonded rock-like material is one of the most commonly used materials to simulate different rocks in physical model tests. However, the applicability of this material in solid-fluid coupling model tests is not clear because there are few research studies on the water-physical properties of this material and its similarity to the actual rock is uncertain. This paper presents a systemic experimental study on the water-physical properties of the cement-plaster bonded rock-like materials. The parameters of rock-like materials, including water absorption, softening coefficient, and permeability coefficient, were compared with those of actual rocks to analyse the applicability of such material. Then, the influence of proportion on the water-physical properties of this material was discussed. By multiple regression analysis of the test results, empirical equations between the water-physical parameters and proportions were proposed. The equations can be used to estimate the water-physical properties of cement-plaster bonded rock-like materials with specific proportion and thus to select suitable materials in the solid-fluid coupling physical model tests.


2012 ◽  
Vol 1 (33) ◽  
pp. 34 ◽  
Author(s):  
Stefanie Lorke ◽  
Babette Scheres ◽  
Holger Schüttrumpf ◽  
Antje Bornschein ◽  
Reinhard Pohl

Flow processes like flow depths and flow velocities give important information about erosion and infiltration processes, which can lead to an unstable dike structure and consequently to dike failure. Up to now several physical model tests on wave run-up and wave overtopping are available to adjust and improve design formula for different dike structures. This kind of physical model tests have been performed in the here presented project FlowDike. Its main purpose is to consider two new aspects that could influence the assessment of wave run-up and wave overtopping as well as the flow processes on dikes which have not been investigated yet: longshore current and wind. Especially in estuaries and along coasts, the effect of tidal and storm induced currents combined with local wind fields can influence the incoming wave parameters at the dike toe as well as the wave run-up height, the wave overtopping rate and the flow processes on dikes. This paper will focus on these flow processes on dike slopes and dike crests on an 1:6 sloped dike influenced by oblique wave attack and longshore current.


Sign in / Sign up

Export Citation Format

Share Document