scholarly journals Landscape Genetic Connectivity and Evidence for Recombination in the North American Population of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans

2021 ◽  
Vol 7 (3) ◽  
pp. 182
Author(s):  
Adrian Forsythe ◽  
Karen J. Vanderwolf ◽  
Jianping Xu

White-Nose Syndrome is an ongoing fungal epizootic caused by epidermal infections of the fungus, Pseudogymnoascus destructans (P. destructans), affecting hibernating bat species in North America. Emerging early in 2006 in New York State, infections of P. destructans have spread to 38 US States and seven Canadian Provinces. Since then, clonal isolates of P. destructans have accumulated genotypic and phenotypic variations in North America. Using microsatellite and single nucleotide polymorphism markers, we investigated the population structure and genetic relationships among P. destructans isolates from diverse regions in North America to understand its pattern of spread, and to test hypotheses about factors that contribute to transmission. We found limited support for genetic isolation of P. destructans populations by geographic distance, and instead identified evidence for gene flow among geographic regions. Interestingly, allelic association tests revealed evidence for recombination in the North American P. destructans population. Our landscape genetic analyses revealed that the population structure of P. destructans in North America was significantly influenced by anthropogenic impacts on the landscape. Our results have important implications for understanding the mechanism(s) of P. destructans spread.

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Kevin P. Drees ◽  
Jeffrey M. Lorch ◽  
Sebastien J. Puechmaille ◽  
Katy L. Parise ◽  
Gudrun Wibbelt ◽  
...  

ABSTRACT Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans , a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans . Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. IMPORTANCE This phylogenetic study of the bat white-nose syndrome agent, P. destructans , uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Jigar Trivedi ◽  
Josianne Lachapelle ◽  
Karen J. Vanderwolf ◽  
Vikram Misra ◽  
Craig K. R. Willis ◽  
...  

ABSTRACT Emerging fungal diseases of wildlife are on the rise worldwide, and the white-nose syndrome (WNS) epidemic in North American bats is a catastrophic example. The causal agent of WNS is a single clone of the fungus Pseudogymnoascus destructans. Early evolutionary change in this clonal population has major implications for disease ecology and conservation. Accumulation of variation in the fungus through mutation, and shuffling of variation through recombination, could affect the virulence and transmissibility of the fungus and the durability of what appears to be resistance arising in some bat populations. Our genome-wide analysis shows that the clonal population of P. destructans has expanded in size from a single genotype, has begun to accumulate variation through mutation, and presents no evidence as yet of genetic exchange among individuals. IMPORTANCE Since its discovery in 2006, the emerging infectious disease known as white-nose syndrome has killed millions of bats in North America, making it one of the most devastating wildlife epidemics in recorded history. We demonstrate that there has been as yet only spontaneous mutation across the North American population of P. destructans, and we find no indication of recombination. Thus, selective forces, which might otherwise impact pathogenic virulence, have so far had essentially no genetic variation on which to act. Our study confirmed the time of origin for the first and, thus far, only introduction of P. destructans to North America. This system provides an unprecedented opportunity to follow the evolution of a host-pathogen interaction unfolding in real time.


1993 ◽  
Vol 71 (8) ◽  
pp. 1064-1071 ◽  
Author(s):  
William J. Otrosina ◽  
Thomas E. Chase ◽  
Fields W. Cobb Jr. ◽  
Kari Korhonen

Isolates of Heterobasidion annosum (Fr.) Bref. representing North American S and P and European S, P, and F intersterility groups were subjected to isozyme analysis. European S, P, and F groups had more variability than the North American S and P groups in expected hterozygosity, number of alleles per locus, and percent polymorphic loci. In contrast with the North American S and P groups, the European intersterility groups could not be distinguished from each other on the basis of individual isozyme loci, although significant differences in allele frequencies exist between European S and P groups. This suggests that evolution proceeded at different rates in the intersterility groups, or intersterility barriers appeared later in the European populations relative to the North American populations of H. annosum. Changes in climate and host species associations during the Tertiary may have been a major factor in evolution of H. annosum intersterility groups. Key words: allozymes, forest tree hosts, playnological events, evolutionary relationships, Hymenomycetes, root disease.


2016 ◽  
Author(s):  
Ping Ren ◽  
Sunanda S. Rajkumar ◽  
Haixin Sui ◽  
Paul S. Masters ◽  
Natalia Martinkova ◽  
...  

ABSTRACTBat White-nose Syndrome (WNS) fungus Pseudogymnoascus destructans had caused mass mortality in the North American bats. A single clone of the pathogen (Hap_1) was likely introduced in the United States while Eurasian population comprised of several haplotypes. The origin and spread of P. destructans remain enigmatic due in part to a lack of precise population markers. We searched for P. destructans mycoviruses as they are highly host-specific, and their spread could provide a window on the origin of the host fungus. We discovered a P. destructans bipartite virus PdPV-1 with two double-stranded RNA (dsRNA) segments - LS (1,683 bp) and SS (1,524 bp) with motifs similar to viral RNA-dependent RNA polymerase (RdRp) and putative capsid proteins (CPs), respectively. Both LS and SS ORFs were embedded only in the positive strand of each dsRNA segment. Sequence alignments and phylogenetic analysis suggested that both segments constitute the genome of a new virus similar to the mycoviruses in the family Partitiviridae genus Gammapartitivirus. Purified viral particles appeared as isometric virions with approximately 33 nm diameters typical of partitiviruses. A newly developed RT-PCR assay revealed that all US isolates and only a few Eurasian isolates were infected with PdPV-1. PdPV-1 was P. destructans - specific as closely related non-pathogenic fungi P. appendiculatus and P. roseus tested negative. Thus, PdPV-1 establishes a link between the Eurasian and North American P. destructans. PdPV-1 could be used as an experimental tool to further investigate fungal biogeography, and the host - pathogen interactions.


2019 ◽  
Author(s):  
Lav Sharma ◽  
Márcia Sousa ◽  
Ana S. Faria ◽  
Margarida Nunes-Pereira ◽  
João A. Cabral ◽  
...  

AbstractPseudogymnoascus destructans (Pd), the emergent fungus causing bat “White-Nose Syndrome”, responsible for ∼6 million mortalities in the United States (US), is thought to expand clonally in North America and Europe. Presence of distinct mating-types in Europe led to numerous research attempts searching for population sexuality worldwide. This study not only presents the first evidence of genetic recombination in Pd but also detects recombination in Pd genotype data generated by previous studies in Europe and North America, through clone-corrected linkage disequilibrium analysis. Portuguese and other European populations are apparently reproducing through sex between two mating-types. Seeming parasexual recombination in the invasive single mating-type US population rings alarms for the North American bat populations and deserves urgent attention. This study emphasizes on clone-correction in linkage disequilibrium analysis.One Sentence SummaryClone-correction yielded signs of elusive recombination in the global “clonal” populations of white-nose syndrome pathogen.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1278
Author(s):  
Michael Glenn O’Connor ◽  
Amjad Horani ◽  
Adam J. Shapiro

Primary Ciliary Dyskinesia (PCD) is a rare, under-recognized disease that affects respiratory ciliary function, resulting in chronic oto-sino-pulmonary disease. The PCD clinical phenotype overlaps with other common respiratory conditions and no single diagnostic test detects all forms of PCD. In 2018, PCD experts collaborated with the American Thoracic Society (ATS) to create a clinical diagnostic guideline for patients across North America, specifically considering the local resources and limitations for PCD diagnosis in the United States and Canada. Nasal nitric oxide (nNO) testing is recommended for first-line testing in patients ≥5 years old with a compatible clinical phenotype; however, all low nNO values require confirmation with genetic testing or ciliary electron micrograph (EM) analysis. Furthermore, these guidelines recognize that not all North American patients have access to nNO testing and isolated genetic testing is appropriate in cases with strong clinical PCD phenotypes. For unresolved diagnostic cases, referral to a PCD Foundation accredited center is recommended. The purpose of this narrative review is to provide insight on the North American PCD diagnostic process, to enhance the understanding of and adherence to current guidelines, and to promote collaboration with diagnostic pathways used outside of North America.


2013 ◽  
Vol 50 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Richard L. Cifelli ◽  
Cynthia L. Gordon ◽  
Thomas R. Lipka

Multituberculates, though among the most commonly encountered mammalian fossils of the Mesozoic, are poorly known from the North American Early Cretaceous, with only one taxon named to date. Herein we describe Argillomys marylandensis, gen. et sp. nov., from the Early Cretaceous of Maryland, based on an isolated M2. Argillomys represents the second mammal known from the Arundel Clay facies of the Patuxent Formation (Lower Cretaceous: Aptian). Though distinctive in its combination of characters (e.g., enamel ornamentation consisting of ribs and grooves only, cusp formula 2:4, presence of distinct cusp on anterobuccal ridge, enlargement of second cusp on buccal row, central position of ultimate cusp in lingual row, great relative length), the broader affinities of Argillomys cannot be established because of non-representation of the antemolar dentition. Based on lack of apomorphies commonly seen among Cimolodonta (e.g., three or more cusps present in buccal row, fusion of cusps in lingual row, cusps strongly pyramidal and separated by narrow grooves), we provisionally regard Argillomys as a multituberculate of “plagiaulacidan” grade. Intriguingly, it is comparable in certain respects to some unnamed Paulchoffatiidae, a family otherwise known from the Late Jurassic – Early Cretaceous of the Iberian Peninsula.


2021 ◽  
Author(s):  
Cemil Arkula ◽  
Nalan Lom ◽  
John Wakabayashi ◽  
Grant Rea-Downing ◽  
Mark Dekkers ◽  
...  

<p>The western edge of the North America plate contains geological records that formed during the long-lived convergence between plates of the Panthalassa Ocean and North America. The geology of different segments along western North America indicates different polarities (eastward and westward) for subducted slabs and thereby various tectonic histories and settings. The western United States (together with Mexico) plays a key role in this debate, many geologic interpretations assume continuous eastward subduction in contrast to observations within proximal geologic segments and tomographic images of the lower mantle below North America and the eastern Pacific Ocean which suggest a more complex subduction history. In this study, we aim to evaluate the plate tectonic setting in which the Jurassic ophiolites of California formed. Geochemical data from these ophiolites suggest that they formed above a nascent intra-oceanic or continental margin subduction zone. We first developed a kinematic reconstruction of the western US geology back to the Jurassic based on published structural geological data. Importantly, we update the reconstruction of the various branches of the San Andreas fault system to determine the relative position of the ophiolite fragments and adopt a previous restoration of Basin and Range extension which we expand northward towards Washington state. We then reconstruct North American margin deformation associated with Cretaceous to Paleogene shortening and strike-slip faulting. We find no clear candidates in the geological record that may have accommodated major subduction between the Jurassic ophiolite belt and the North American margin and consequently concur with the school of thought that considers that the ophiolite belt, as well as the underlying subduction-accretionary Franciscan Complex, likely formed in the North American fore-arc. We collected paleomagnetic data to reconstruct the spreading direction of the Jurassic Californian ophiolites, by providing new paleomagnetic data from sheeted dykes of the Josephine and Mt. Diablo Ophiolites. These suggest a NE-SW paleo-ridge orientation, oblique to the North American margin which may be explained by partitioning of a dextral component of subduction obliquity relative to North America. We used this spreading direction in combination with published ages of the ophiolites and our restoration of the relative position of these ophiolites prior to post-Jurassic deformation to construct a ridge-transform system at which the Jurassic ophiolites accreted. The results will be used to evaluate which parts of the subduction systems that existed in the eastern Panthalassa Ocean may reside in the western US, and which parts may be better sought in the northern Canadian Segment or/and in the southern Caribbean region.</p>


Sign in / Sign up

Export Citation Format

Share Document