scholarly journals Improvements in the Resistance of the Banana Species to Fusarium Wilt: A Systematic Review of Methods and Perspectives

2021 ◽  
Vol 7 (4) ◽  
pp. 249
Author(s):  
Anelita de Jesus Rocha ◽  
Julianna Matos da Silva Soares ◽  
Fernanda dos Santos Nascimento ◽  
Adriadna Souza Santos ◽  
Vanusia Batista de Oliveira Amorim ◽  
...  

The fungus Fusarium oxysporum f. sp. cubense (FOC), tropical race 4 (TR4), causes Fusarium wilt of banana, a pandemic that has threatened the cultivation and export trade of this fruit. This article presents the first systematic review of studies conducted in the last 10 years on the resistance of Musa spp. to Fusarium wilt. We evaluated articles deposited in different academic databases, using a standardized search string and predefined inclusion and exclusion criteria. We note that the information on the sequencing of the Musa sp. genome is certainly a source for obtaining resistant cultivars, mainly by evaluating the banana transcriptome data after infection with FOC. We also showed that there are sources of resistance to FOC race 1 (R1) and FOC TR4 in banana germplasms and that these data are the basis for obtaining resistant cultivars, although the published data are still scarce. In contrast, the transgenics approach has been adopted frequently. We propose harmonizing methods and protocols to facilitate the comparison of information obtained in different research centers and efforts based on global cooperation to cope with the disease. Thus, we offer here a contribution that may facilitate and direct research towards the production of banana resistant to FOC.

2015 ◽  
Vol 105 (12) ◽  
pp. 1512-1521 ◽  
Author(s):  
Randy C. Ploetz

Banana (Musa spp.) is one of the world’s most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the ‘Gros Michel’-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a ‘Cavendish’-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.


2020 ◽  
Vol 133 (12) ◽  
pp. 3409-3418
Author(s):  
Fajarudin Ahmad ◽  
Nani M. Martawi ◽  
Yuyu S. Poerba ◽  
Hans de Jong ◽  
Henk Schouten ◽  
...  

Abstract Banana is an important fruit and food crop, but is threatened by Fusarium wilt, one of the most devastating soil-borne fungal diseases. Only host resistance facilitates banana cultivation in infested soils around the world, but the genetic basis of Fusarium wilt of banana (FWB) is unknown. We selfed a heterozygous wild banana accession Musa acuminata ssp. malaccensis (Mam, AA, 2n = 22) to generate a mapping population and to investigate the inheritance of resistance to Race 1 and tropical race 4 (TR4) that cause FWB. Phenotyping (N = 217) revealed segregation for resistance, and genotyping by sequencing resulted in 2802 high-quality single-nucleotide polymorphic markers (SNPs) that were used for genetic mapping. Combined analyses of these data showed that a single dominant resistance locus controls resistance to Race 1 and maps near the distal part of chromosome 10. Recombinants, together with the position of the putative resistance gene, were further analysed using graphical genotyping, which retrieved markers flanking a 360 kb genetic region that associates with Race 1 resistance. The region contains 165 putative genes on the reference genome, including 19 leucine-rich repeat receptor-like kinase-like genes. At the same position and phase, we also identified a QTL for TR4 resistance, showing that the locus for resistance against Race 1 provided partial resistance to TR4. However, this effect was far less significant and hence not included in the mapping. These data support the breeding of new banana varieties with resistance to Fusarium wilt.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Sandra E. Branham ◽  
Amnon Levi ◽  
W. Patrick Wechter

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


2012 ◽  
Vol 10 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Mohar Singh ◽  
Z. Khan ◽  
Krishna Kumar ◽  
M. Dutta ◽  
Anju Pathania ◽  
...  

Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.


2016 ◽  
Vol 9 (2) ◽  
pp. 66
Author(s):  
Deden Sukmadjaja ◽  
Ragapadmi Purnamaningsih ◽  
Tri P. Priyatno

<p>Fusarium wilt of banana (Musa spp.) caused by<br />Fusarium oxysporum f. sp. cubense (Foc) is the most serious<br />problem faced in banana cultivation in terms of plant<br />productivity and fruit quality. Mutation breeding is one of the<br />alternative method that can be applied in producing new<br />banana cultivar. Mutants can be induced by chemical<br />mutagen such as ethyl methane sulfonate (EMS) followed by<br />in vitro selection and then evaluation of the mutants to<br />fusarium wilt disease in glasshouse and Foc infected field.<br />The aim of this research was obtained EMS induced and in<br />vitro selected mutants of banana var. Ambon Kuning and<br />evaluated Foc disease resistant clones in glasshouse and<br />Foc infected field. The first step to obtain the explants for<br />this research was initiation and formation of multiple bud<br />clumps (MBC) using MS basal media supplemented with 5,<br />10, and 20 mg/l of benzyladenin. Plant regeneration of MBC<br />was also studied by using MS media containing 0, 0.2, and 1<br />mg/l of benzyladenin. To induce mutagenesis, MBC was<br />soaked in 0.1, 0.3, and 0.5% (v/v) EMS for 1, 2, and 3 hours.<br />The assesment of resistant MBC mutants to Fusarium<br />phytotoxin was conducted by using fusaric acid (FA) as<br />selection agent in concentration of 30, 45, and 60 ppm.<br />Putative mutant plants produced by in vitro selection were<br />further tested using spore solution of Foc race 4 in<br />glasshouse. Meanwhile, Foc resistance assesment in the<br />infected field was conducted in Pasirkuda Experimental<br />Station, Bogor Agricultural University. The results showed<br />that MBC can be formed in MS basal media supplemented<br />with 10 or 20 mg/l benzyladenin. The EMS played a role in<br />obtaining mutants by producing 68 MBC putative mutants<br />tolerant to Foc based on FA selection. Further evaluation in<br />the glasshouse was obtained 64 Foc resistant plants from<br />391 putative mutants produced by in vitro selection.<br />Evaluation in the Foc infected field showed six clones<br />survived until generative phase (12 month of age).</p>


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1133
Author(s):  
Freddy Magdama ◽  
Lorena Monserrate-Maggi ◽  
Lizette Serrano ◽  
José García Onofre ◽  
María del Mar Jiménez-Gasco

The continued dispersal of Fusarium oxysporum f. sp. cubense Tropical race 4 (FocTR4), a quarantine soil-borne pathogen that kills banana, has placed this worldwide industry on alert and triggered enormous pressure on National Plant Protection (NPOs) agencies to limit new incursions. Accordingly, biosecurity plays an important role while long-term control strategies are developed. Aiming to strengthen the contingency response plan of Ecuador against FocTR4, a population biology study—including phylogenetics, mating type, vegetative compatibility group (VCG), and pathogenicity testing—was performed on isolates affecting local bananas, presumably associated with race 1 of F. oxysporum f. sp. cubense (Foc). Our results revealed that Foc populations in Ecuador comprise a single clonal lineage, associated with VCG0120. The lack of diversity observed in Foc populations is consistent with a single introduction event from which secondary outbreaks originated. The predominance of VCG0120, together with previous reports of its presence in Latin America countries, suggests this group as the main cause of the devastating Fusarium wilt epidemics that occurred in the 1950s associated to the demise of ‘Gros Michel’ bananas in the region. The isolates sampled from Ecuador caused disease in cultivars that are susceptible to races 1 and 2 under greenhouse experiments, although Fusarium wilt symptoms in the field were only found in ‘Gros Michel’. Isolates belonging to the same VCG0120 have historically caused disease on Cavendish cultivars in the subtropics. Overall, this study shows how Foc can be easily dispersed to other areas if restriction of contaminated materials is not well enforced. We highlight the need of major efforts on awareness and monitoring campaigns to analyze suspected cases and to contain potential first introduction events of FocTR4 in Ecuador.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 694-694 ◽  
Author(s):  
F. García-Bastidas ◽  
N. Ordóñez ◽  
J. Konkol ◽  
M. Al-Qasim ◽  
Z. Naser ◽  
...  

Fusarium wilt or Panama disease of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive plant diseases (3). Race 1 ravaged ‘Gros Michel’-based export trades until the cultivar was replaced by resistant Cavendish cultivars. However, a new variant of Foc, tropical race 4 (TR4), was identified in Southeast Asia in 1992 and has spread throughout the region (3). Cavendish clones, which are most important in subsistence and export production, are among the wide range of cultivars that are affected, and there is a huge concern that TR4 will further disseminate in Africa since its presence was announced in November 2013 and move into Latin America, thereby threatening other vital banana-growing regions. In Jordan, Cavendish bananas are produced on 1,000 to 1,500 ha in the Jordan Valley (32°N, 35.5°E). In 2006, symptoms of Fusarium wilt were observed and sampled for the isolation of Foc. On half-strength PDA amended with 100-ppm streptomycin sulfate, pale salmon-colored colonies with floccose mycelia developed consistently from surface-disinfested xylem. Single microconidia from these colonies were transferred to half-strength PDA, and conidia and mycelia from these monospore colonies were stored at –80°C in 15% glycerol. On banana leaf agar (Co60-irradiated leaf tissue on water agar), isolates resembled F. oxysporum phenotypically by producing infrequent three- to five-celled macroconidia, copious, usually aseptate microconida on monophialides, and terminal and intercalary chlamydospores after 2 weeks (2). With nitrate-nonutilizing (nit) mutants and testers for different vegetative compatibility groups (VCGs), each of seven examined monospore isolates were placed in VCG 01213, which contains only strains of TR4 (3). Total DNA was extracted from six isolates and PCR analyses, which confirmed their identity as TR4 (1). Subsequently, one of the isolates (JV11) was analyzed for pathogenicity. Inoculum production and inoculation were according to (1) by dipping (30 min) root-wounded 10-week-old plants of the Cavendish cv. Grand Naine in 2 liters of spore suspension (1.0 × 106 spores/ml). Inoculated plants were then placed in sand in 3-liter pots under 28°C, 70% relative humidity, and a 16/8-h light/darkness photoperiod. Sets of three plants were each treated with either JV11 or two TR4 controls (isolate II-5 and a strain isolated from an affected Cavendish plant in Mindanao, Philippines, both of which were diagnosed as TR4 by PCR and pathogenicity analyses). Control sets were either treated with race 1 originating from Cruz das Almas, Bahia, Brazil (1), or water. After 2 weeks, plants inoculated with JV11 and TR4 controls produced typical symptoms of Fusarium wilt. After 4 weeks, tissue was collected from all plants and plated on Komada's medium. TR4 was directly confirmed by PCR (1), either directly from symptomatic plants (JV11 and TR4 controls), or from isolates that were recovered from these plants. Nothing was re-isolated from race 1 inoculated plants and water controls, which remained asymptomatic. This is the first report of TR4 affecting Cavendish outside Southeast Asia, is its northernmost outbreak, and represents a dangerous expansion of this destructive race. Currently, 80% of the Jordan Valley production area is affected by Fusarium wilt, and 20 to 80% of the plants are affected in different farms. References: (1) M. A. Dita et al. Plant Pathol. 59:348, 2010. (2) J. F. Leslie and B. A. Summerell. The Fusarium Lab Manual. Blackwell, Ames, 2006. (3) R. C. Ploetz. Phytopathology 96:653, 2006.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 292-297 ◽  
Author(s):  
M. Lema ◽  
P. Soengas ◽  
P. Velasco ◽  
M. Francisco ◽  
M. E. Cartea

Black rot, caused by Xanthomonas campestris pv. campestris, is one of the most important diseases affecting Brassica crops worldwide. Nine races have been differentiated in X. campestris pv. campestris, with races 1 and 4 being the most virulent and widespread. The objective of this work was to identify sources of resistance to races 1 and 4 of X. campestris pv. campestris in different Brassica napus crops, mainly in the underexplored pabularia group. Seventy-six accessions belonging to four B. napus groups were screened for resistance to two X. campestris pv. campestris races (1 and 4). The strain of race 1 used in this study was more virulent on the tested materials than the strain of race 4. No race-specific resistance was found to race 1. Most cultivars were susceptible except Russian kale, from the pabularia group, which showed some resistant plants and some other accessions with some partially resistant plants. High levels of race-specific resistance to race 4 were found in the pabularia group, and great variability within accessions was identified. Three improved cultivars (Ragged Jack kale, Friese Gele, and Valle del Oro) and four landraces (Russian kale, MBG-BRS0037, MBG-BRS0041, and MBG-BRS0131) showed plants with some degree of resistance to both races, which may indicate that race-nonspecific resistance is involved. These accessions could be directly used in breeding programs, either as improved cultivars or as donors of race-specific resistance to other Brassica cultivars.


2003 ◽  
Vol 54 (9) ◽  
pp. 829 ◽  
Author(s):  
J. M. Mackie ◽  
J. M. Musial ◽  
N. R. O'Neill ◽  
J. A. G. Irwin

Anthracnose and crown rot, caused by Colletotrichum trifolii, are serious diseases of lucerne (Medicago sativa L.) in humid regions of the world. A race survey was conducted by inoculating individual lucerne clones (genotypes) with C. trifolii isolates collected from a range of Medicago hosts, locations, and years in south-eastern Queensland. This survey revealed for the first time in Australia the presence of race 2 (virulence on anthracnose resistance gene An1) and the first world report of race 4 (virulence on An2). A collection of North American race 1 and race 2 C. trifolii isolates, when inoculated onto the Australian differential clones, gave responses that were in agreement with their North American reactions. A RAPD analysis was conducted on 9 Australian C. trifolii isolates including races 1, 2, and 4; two C. destructivum and one C. gloeosporioides isolate were included as known outliers. For the C. trifolii isolates, 94.6% similarity was found regardless of host origin or race, compared with 2.2% similarity between this group and the C. gloeosporioides and C. destructivum isolates, confirming that the new races belong to C. trifolii. Currently, it is hypothesised that only plants carrying genes An1 and An2 are resistant to the 3 races. Of 22 cultivars screened against the 3 races, only UQL-1, Hallmark, and Pioneer 54Q53 had >30% of plants resistant to the 3 races in separate screenings. The research highlights the need to find new sources of resistance to C. trifolii in lucerne.


Sign in / Sign up

Export Citation Format

Share Document