scholarly journals Comparison of Two Commercial Colorimetric Broth Microdilution Tests for Candida Susceptibility Testing: Sensititre YeastOne versus MICRONAUT-AM

2021 ◽  
Vol 7 (5) ◽  
pp. 356
Author(s):  
Sophie Philips ◽  
Frederik Van Van Hoecke ◽  
Emmanuel De De Laere ◽  
Steven Vervaeke ◽  
Roos De De Smedt ◽  
...  

Two colorimetric broth microdilution antifungal susceptibility tests were compared, Sensititre YeastOne and MICRONAUT-AM for nine antifungal agents. One hundred clinical Candida isolates were tested, representing a realistic population for susceptibility testing in daily practice. The reproducibility characteristics were comparable. Only for fluconazole, caspofungin, 5-flucytosine and amphotericin B, an essential agreement of ≥90% could be demonstrated. Sensititre minimal inhibitory concentrations (MICs) were systematically higher than MICRONAUT MICs for all antifungals, except for itraconazole. CLSI clinical breakpoints (CBPs) and epidemiological cut-off values (ECVs) were used for Sensititre MICs while for MICRONAUT the EUCAST CBPs and ECVs were used. Only fluconazole, micafungin, and amphotericin B had a categorical agreement of ≥90%. For fluconazole, micafungin, and amphotericin B the susceptibility proportions were comparable. Susceptibility proportion of posaconazole and voriconazole was higher using the MICRONAUT system. For itraconazole and anidulafungin, the susceptibility proportion was higher using Sensititre. It was not possible to determine the true MIC values or the correctness of a S/I/R result since both commercial systems were validated against a different reference method. These findings show that there is a significant variability in susceptibility pattern and consequently on use of antifungals in daily practice, depending on the choice of commercial system.

2018 ◽  
Vol 56 (10) ◽  
Author(s):  
Hsuan-Chen Wang ◽  
Ming-I Hsieh ◽  
Pui-Ching Choi ◽  
Chi-Jung Wu

ABSTRACT This study compared the YeastOne and reference CLSI M38-A2 broth microdilution methods for antifungal susceptibility testing of Aspergillus species. The MICs of antifungal agents were determined for 100 Aspergillus isolates, including 54 Aspergillus fumigatus (24 TR34/L98H isolates), 23 A. flavus, 13 A. terreus, and 10 A. niger isolates. The overall agreement (within 2 2-fold dilutions) between the two methods was 100%, 95%, 92%, and 90% for voriconazole, posaconazole, itraconazole, and amphotericin B, respectively. The voriconazole geometric mean (GM) MICs were nearly identical for all isolates using both methods, whereas the itraconazole and posaconazole GM MICs obtained using the YeastOne method were approximately 1 dilution lower than those obtained using the reference method. In contrast, the amphotericin B GM MIC obtained using the YeastOne method was 3.3-fold higher than that observed using the reference method. For the 24 A. fumigatus TR34/L98H isolates assayed, the categorical agreement (classified according to the CLSI epidemiological cutoff values) was 100%, 87.5%, and 83.3% for itraconazole, voriconazole, and posaconazole, respectively. For four A. niger isolates, the itraconazole MICs were >8 μg/ml using the M38-A2 method due to trailing growth, whereas the corresponding itraconazole MICs obtained using the YeastOne method were all ≤0.25 μg/ml without trailing growth. These data suggest that the YeastOne method can be used as an alternative for azole susceptibility testing of Aspergillus species and for detecting the A. fumigatus TR34/L98H isolates but that this method fails to detect A. niger isolates exhibiting trailing growth with itraconazole. Additionally, for isolates with azole MICs that approach or that are at susceptibility breakpoints or with high amphotericin B MICs detected using the YeastOne method, further MIC confirmation using the reference CLSI method is needed.


1998 ◽  
Vol 36 (9) ◽  
pp. 2609-2612 ◽  
Author(s):  
M. A. Pfaller ◽  
S. Arikan ◽  
M. Lozano-Chiu ◽  
Y.-S. Chen ◽  
S. Coffman ◽  
...  

A method using a commercially prepared colorimetric microdilution panel (ASTY; Kyokuto Pharmaceutical Industrial Co., Ltd.) was compared in four different laboratories with the National Committee for Clinical Laboratory Standards (NCCLS) reference microdilution method by testing 802 clinical isolates of Candida spp. (C. albicans, C. glabrata, C. tropicalis,C. parapsilosis, C. krusei, C. lusitaniae, C. guilliermondii, C. lipolytica, C. rugosa, and C. zeylanoides) against amphotericin B, 5-fluorocytosine (5FC), fluconazole, and itraconazole. Reference MIC endpoints were established after 48 h of incubation, and ASTY endpoints were established after 24 and 48 h of incubation. ASTY endpoints were determined to be the time at which the color of the first well changed from red (indicating growth) to purple (indicating growth inhibition) or blue (indicating no growth). Excellent agreement (within 2 dilutions) between the reference and colorimetric MICs was observed. Overall agreement was 93% at 24 h and 96% at 48 h. Agreement ranged from 90% with itraconazole and 5FC to 96% with amphotericin B at 24 h and from 92% with itraconazole to 99% with amphotericin B and 5FC at 48 h. The ASTY colorimetric microdilution panel method appears to be comparable to the NCCLS reference method for testing the susceptibilities of Candida spp. to a variety of antifungal agents.


2007 ◽  
Vol 51 (9) ◽  
pp. 3329-3337 ◽  
Author(s):  
Joseph Meletiadis ◽  
Charalampos Antachopoulos ◽  
Theodouli Stergiopoulou ◽  
Spyros Pournaras ◽  
Emmanuel Roilides ◽  
...  

ABSTRACT Antifungal agents may differ in their fungicidal activities against Aspergillus spp. In order to compare the fungicidal activities of voriconazole and amphotericin B against 40 isolates of Aspergillus fumigatus, A. flavus, and A. terreus, we developed a new microbroth colorimetric method for assessing fungicidal activities and determining minimal fungicidal concentrations (MFCs). This methodology follows the antifungal susceptibility testing reference method M-38A for MIC determination. After drug removal and addition of fresh medium, growth of viable conidia adhering to the bottoms of the microtitration wells was assessed by a colorimetric assay of metabolic activity after 24 h of incubation. The new method was faster (six times), reproducible (92 to 97%), and in agreement with culture-based MFCs (91 to 100%). Differential fungicidal activities of voriconazole and amphotericin B were found among the three Aspergillus species, with A. fumigatus and A. flavus having the lowest (1 and 2 mg/liter, respectively) and A. terreus the highest (>16 mg/liter) median amphotericin B MFCs; A. flavus had a lower median voriconazole MFC (4 mg/liter) than the other species (>8 mg/liter; P < 0.05). Amphotericin B was fungicidal (MFC/MIC ≤ 4) against all A. fumigatus and A. flavus isolates but no A. terreus isolates, whereas voriconazole was fungicidal against 82% of A. flavus isolates and fungistatic (MFC/MIC > 4) against 94% of A. fumigatus and 84% of A. terreus isolates. The new methodology revealed a concentration-dependent sigmoid pattern of fungicidal effects, indicating that fungicidal activity is not an all-or-nothing phenomenon and that some degree of fungicidal action can be found even for agents considered fungistatic based on the MFC/MIC ratio.


2014 ◽  
Vol 53 (1) ◽  
pp. 255-261 ◽  
Author(s):  
Hedda Luise Koehling ◽  
Birgit Willinger ◽  
Jan Buer ◽  
Peter-Michael Rath ◽  
Joerg Steinmann

Candidemia is an important cause of morbidity and mortality in immunosuppressed patients.Candidaisolates must be cultivated, identified, and tested for susceptibility. We compared the performance of a new colorimetric broth microdilution panel (SensiQuattroCandidaEU) for antifungal susceptibility testing to that of Liofilchem's MIC test strip and the EUCAST reference broth microdilution protocol. We tested 187 blood culture isolates of 5Candidaspp. (120C. albicans, 38C. glabrata, 10C. parapsilosis, 12C. tropicalis, and 7C. krusei) against seven antifungal agents (amphotericin B, fluconazole, voriconazole, posaconazole, caspofungin, anidulafungin, and micafungin) and interpreted the MICs according to the EUCAST recommendations. If applicable, the overall essential agreement (EA) of the SensiQuattro panel with the reference broth microdilution was slightly higher forC. albicans(87%) than for other species (85.8%). We found that SensiQuattro performed best in testing amphotericin B (EA, 100%), voriconazole (EA, 93.7%), and posaconazole (EA, 94.8%) againstC. albicans, but its error rate for this species was high (29.6%) because of mainly major errors (26.7%) in testing anidulafungin and micafungin. Compared to the SensiQuattro panel, the MIC test strip exhibited a higher level of agreement for most isolates. SensiQuattro assays are easy to perform, but they are currently not suitable for testing echinocandins againstCandidaspp.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Maria Aigner ◽  
Thomas Erbeznik ◽  
Martin Gschwentner ◽  
Cornelia Lass-Flörl

ABSTRACT Candida species were tested for susceptibility to caspofungin, anidulafungin, and micafungin in order to evaluate the roles of Etest and Sensititre YeastOne in antifungal susceptibility testing for daily routines and to survey resistance. A total of 104 Candida species isolates detected from blood cultures were investigated. With EUCAST broth microdilution as the reference method, essential agreement (EA), categorical agreement (CA), very major errors (VME), major errors (ME), and minor (MIN) errors were assessed by reading MICs at 18, 24, and 48 h. By use of EUCAST broth microdilution and species-specific clinical breakpoints (CBPs), echinocandin resistance was not detected during the study period. Using EUCAST CBPs, MIC readings at 24 h for the Etest and Sensititre YeastOne resulted in CA levels of 99% and 93% for anidulafungin and 99% and 97% for micafungin. Using revised CLSI CBPs for caspofungin, CA levels were 92% and 99% for Etest and Sensititre YeastOne. The Etest proved an excellent, easy-to-handle alternative method for testing susceptibility to anidulafungin and micafungin. Due to misclassifications, the Etest is less suitable for testing susceptibility to caspofungin (8% of isolates falsely tested resistant). The CA levels of Sensititre YeastOne were 93% and 97% for anidulafungin and micafungin (24 h) by use of EUCAST CBPs and increased to 100% for both antifungals if CLSI CBPs were applied and to 100% and 99% if Sensititre YeastOne epidemiological cutoff values (ECOFFs) were applied. No one echinocandin could be demonstrated to be superior to another in vitro. Since resistance was lacking among our Candida isolates, we cannot derive any recommendation from accurate resistance detection by the Etest and Sensititre YeastOne.


1999 ◽  
Vol 45 (10) ◽  
pp. 871-874 ◽  
Author(s):  
Eric Dannaoui ◽  
Florence Persat ◽  
Marie-France Monier ◽  
Elisabeth Borel ◽  
Marie-Antoinette Piens ◽  
...  

A comparative study of visual and spectrophotometric MIC endpoint determinations for antifungal susceptibility testing of Aspergillus species was performed. A broth microdilution method adapted from the National Committee for Clinical Laboratory Standards (NCCLS) was used for susceptibility testing of 180 clinical isolates of Aspergillus species against amphotericin B and itraconazole. MICs were determined visually and spectrophotometrically at 490 nm after 24, 48, and 72h of incubation, and MIC pairs were compared. The agreement between the two methods was 99% for amphotericin B and ranged from 95 to 98% for itraconazole. It is concluded that spectrophotometric MIC endpoint determination is a valuable alternative to the visual reference method for susceptibility testing of Aspergillus species.Key words: antifungal, susceptibility testing, Aspergillus, spectrophotometric reading.


2000 ◽  
Vol 44 (10) ◽  
pp. 2752-2758 ◽  
Author(s):  
Rama Ramani ◽  
Vishnu Chaturvedi

ABSTRACT Candida species other than Candida albicansfrequently cause nosocomial infections in immunocompromised patients. Some of these pathogens have either variable susceptibility patterns or intrinsic resistance against common azoles. The availability of a rapid and reproducible susceptibility-testing method is likely to help in the selection of an appropriate regimen for therapy. A flow cytometry (FC) method was used in the present study for susceptibility testing ofCandida glabrata, Candida guilliermondii,Candida krusei, Candida lusitaniae,Candida parapsilosis, Candida tropicalis, andCryptococcus neoformans based on accumulation of the DNA binding dye propidium iodide (PI). The results were compared with MIC results obtained for amphotericin B and fluconazole using the NCCLS broth microdilution method (M27-A). For FC, the yeast inoculum was prepared spectrophotometrically, the drugs were diluted in either RPMI 1640 or yeast nitrogen base containing 1% dextrose, and yeast samples and drug dilutions were incubated with amphotericin B and fluconazole, respectively, for 4 to 6 h. Sodium deoxycholate and PI were added at the end of incubation, and fluorescence was measured with a FACScan flow cytometer (Becton Dickinson). The lowest drug concentration that showed a 50% increase in mean channel fluorescence compared to that of the growth control was designated the MIC. All tests were repeated once. The MICs obtained by FC for all yeast isolates except C. lusitaniae were in very good agreement (within 1 dilution) of the results of the NCCLS broth microdilution method. Paired ttest values were not statistically significant (P = 0.377 for amphotericin B; P = 0.383 for fluconazole). Exceptionally, C. lusitaniae isolates showed higher MICs (2 dilutions or more) than in the corresponding NCCLS broth microdilution method for amphotericin B. Overall, FC antifungal susceptibility testing provided rapid, reproducible results that were statistically comparable to those obtained with the NCCLS method.


2015 ◽  
Vol 59 (6) ◽  
pp. 3675-3682 ◽  
Author(s):  
B. Risslegger ◽  
C. Lass-Flörl ◽  
G. Blum ◽  
M. Lackner

ABSTRACTFor antifungal susceptibility testing of nonsporulating or poorly sporulating dermatophytes, a fragmented-mycelium inoculum preparation method was established and compared to broth microdilution testing according to CLSI and EUCAST guidelines. Moreover, thein vitroactivity of new antifungal agents against dermatophytes was evaluated. Agreement between the mycelial inoculum method and the CLSI broth microdilution method was high (93% to 100%). Echinocandins (minimal effective concentration [MEC], ≤0.5 mg/liter) and posaconazole (MIC, ≤3.00 mg/liter) showed good activity against all tested dermatophytes.


2020 ◽  
Vol 6 (3) ◽  
pp. 103 ◽  
Author(s):  
Patrick Schwarz ◽  
Eric Dannaoui

The interaction of isavuconazole with immunosuppressors (tacrolimus, cyclosporin A, or sirolimus) against 30 Aspergillus isolates belonging to the most common species responsible for invasive aspergillosis in humans (Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus) was evaluated in vitro by a microdilution checkerboard technique based on the EUCAST reference method for antifungal susceptibility testing. The interpretation of the results was performed based on the fractional inhibitory concentration index. The combination of isavuconazole with tacrolimus, cyclosporin A, or sirolimus, was synergistic for 56, 20, or 10% of the isolates, respectively. Interestingly synergy of the combination of isavuconazole with tacrolimus was also achieved for the majority of azole-resistant isolates of A. fumigatus, and for all A. niger isolates with isavuconazole minimal inhibitory concentrations ≥ 8 µg/mL. Antagonistic interactions were never observed for any combination tested.


Sign in / Sign up

Export Citation Format

Share Document