scholarly journals Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 423
Author(s):  
Shirin Moradi ◽  
Thomas Heinze ◽  
Jasmin Budler ◽  
Thanushika Gunatilake ◽  
Andreas Kemna ◽  
...  

Rainfall-induced landslides are a disastrous natural hazard causing loss of life and significant damage to infrastructure, farmland and housing. Hydromechanical models are one way to assess the slope stability and to predict critical combinations of groundwater levels, soil water content and precipitation. However, hydromechanical models for slope stability evaluation require knowledge about mechanical and hydraulic parameters of the soils, lithostratigraphy and morphology. In this work, we present a multi-method approach of site characterization and investigation in combination with a hydromechanical model for a landslide-prone hillslope near Bonn, Germany. The field investigation was used to construct a three-dimensional slope model with major geological units derived from drilling and refraction seismic surveys. Mechanical and hydraulic soil parameters were obtained from previously published values for the study site based on laboratory analysis. Water dynamics were monitored through geoelectrical monitoring, a soil water content sensor network and groundwater stations. Historical data were used for calibration and validation of the hydromechanical model. The well-constrained model was then used to calculate potentially hazardous precipitation events to derive critical thresholds for monitored variables, such as soil water content and precipitation. This work introduces a potential workflow to improve numerical slope stability analysis through multiple data sources from field investigations and outlines the usage of such a system with respect to a site-specific early-warning system.

2000 ◽  
Vol 40 (1) ◽  
pp. 37 ◽  
Author(s):  
S. J. Lolicato

Fortnightly soil water content measurements to a depth of 2.1 m under 4 cocksfoot cultivars, 2 phalaris cultivars, 2 lucerne cultivars and 1 Lotus corniculatus cultivar were used to compare soil profile drying and to define seasonal patterns of plant water use of the species over a 3-year period, on a duplex soil. Cultivars were also selected, within species groups, for varying seasonal growth patterns to assess this influence on soil water dynamics and growth. Over the 3-year period, treatments with the highest and lowest measures of profile soil water content were used to derive and compare values of maximum plant extractable water. Plots were maintained for a further 3 years, after which soil water content measurements in autumn were used to assess long-term effects of the treatments. The effect of seasonal growth patterns within a species was negligible; however, there were significant differences between species. Twenty-one months after pasture establishment, lucerne alone had a drying effect at 2.0 m depth and subsequently it consistently showed profiles with the lowest soil water content. Maximum plant extractable water was greatest for lucerne (230 mm), followed by phalaris (210 mm), Lotus corniculatus (200 mm) and cocksfoot (170 mm). Profiles with the lowest soil water content were associated with greater herbage growth and greater depths of water extraction. The soil water deficits developed by the treatments in autumn of the fourth year were similar to those measured in autumn of the seventh year, implying that a species-dependant equilibrium had been reached. Long-term rainfall data is used to calculate the probabilities of recharge occurring when rainfall exceeds maximum potential deficits for the different pasture species.


2020 ◽  
Vol 12 (22) ◽  
pp. 9451
Author(s):  
Xiaowen Wang ◽  
Huanjie Cai ◽  
Liang Li ◽  
Xiaoyun Wang

Deficit irrigation strategy is essential for sustainable agricultural development in arid regions. A two−year deficit irrigation field experiment was conducted to study the water dynamics of winter wheat under deficit irrigation in Guanzhong Plain in Northwest China. Three irrigation levels were implemented during four growth stages of winter wheat: 100%, 80% and 60% of actual evapotranspiration (ET) measured by the lysimeter with sufficient irrigation treatment (CK). The agro−hydrological model soil−water−atmosphere−plant (SWAP) was used to simulate the components of the farmland water budget. Sensitivity analysis for parameters of SWAP indicated that the saturated water content and water content shape factor n were more sensitive than the other parameters. The verification results showed that the SWAP model accurately simulated soil water content (average relative error (MRE) < 21.66%, root mean square error (RMSE) < 0.07 cm3 cm−3) and ET (R2 = 0.975, p < 0.01). Irrigation had an important impact on actual plant transpiration, but the actual soil evaporation had little change among different treatments. The average deep percolation was 14.54 mm and positively correlated with the total irrigation amount. The model established using path analysis and regression methods for estimating ET performed well (R2 = 0.727, p < 0.01). This study provided effective guidance for SWAP model parameter calibration and a convenient way to accurately estimate ET with fewer variables.


2019 ◽  
Vol 14 (No. 4) ◽  
pp. 229-239 ◽  
Author(s):  
Xueya Zhou ◽  
Dexin Guan ◽  
Jiabing Wu ◽  
Fenghui Yuan ◽  
Anzhi Wang ◽  
...  

Soil water dynamic is considered an important process for water resource and plantation management in Horqin Sand Land, northern China. In this study, soil water content simulated by the SWMS-2D model was used to systematically analyse soil water dynamics and explore the relationship between soil water and rainfall among micro-landforms (i.e., top, upslope, midslope, toeslope, and bottomland) and 0–200 cm soil depths during the growing season of 2013 and 2015. The results showed that soil water dynamics in 0–20 cm depths were closely linked to rainfall patterns, whereas soil water content in 20–80 cm depths illustrated a slight decline in addition to fluctuations caused by rainfall. At the top position, the soil water content in different ranges of depths (20–40 and 80–200 cm) was near the wilting point, and hence some branches, and even entire plants exhibited diebacks. At the upslope or midslope positions, the soil water content in 20–80 or 80–200 cm depths was higher than at the top position. Soil water content was higher at the toeslope and bottomland positions than at other micro-landforms, and deep caliche layers had a positive feedback effect on shrub establishment. Soil water recharge by rainfall was closely related to rainfall intensity and micro-landforms. Only rainfalls &gt; 20 mm significantly increased water content in &gt; 40 cm soil depths, but deeper water recharge occurred at the toeslope position. A linear equation was fitted to the relationship between soil water and antecedent rainfall, and the slopes and R<sup>2</sup> of the equations were different among micro-landforms and soil depths. The linear equations generally fitted well in 0–20 and 20–40 cm depths at the top, upslope, midslope, and toeslope positions (R<sup>2</sup> value of about 0.60), with soil water in 0–20 cm depths showing greater responses to rainfall (average slope of 0.189). In 20–40 cm depths, the response was larger at the toeslope position, with a slope of 0.137. In 40–80 cm depths, a good linear fit with a slope of 0.041 was only recorded at the toeslope position. This study provides a soil water basis for ecological restoration in similar regions.  


2012 ◽  
Vol 9 (7) ◽  
pp. 8027-8062 ◽  
Author(s):  
X. Pan ◽  
J. Zhang ◽  
P. Huang ◽  
K. Roth

Abstract. We explore the feasibility to quantify the field-scale soil water dynamics through time series of GPR (ground-penetrating radar) measurements. They bridge the gap between accurate and well-established point measurements and the field-scale where soil hydrology issues are addressed. Working on a 40 m × 50 m area in a heterogeneous agricultural field, we obtain a time series of radargrams after a heavy rainfall event. On the one hand, these yield a three-dimensional representation of the subsurface architecture, in particular of the layer boundary that originates from paleo-sand dunes and of a number of clay inclusions in an otherwise rather uniform sand. On the other hand, the total soil water volume between the surface and the layer boundary is obtained. We assess the precision and the accuracy of these quantities and conclude that the method is sensitive enough to capture the spatial structure of the changing soil water content. While the sensitivity of the method still needs to be improved, it already produced useful information to understand the observed patterns in crop height and it yielded insight into the dynamics of soil water content at this site including the effect of evaporation.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 511-524
Author(s):  
Mario Kirchhoff ◽  
Tobias Romes ◽  
Irene Marzolff ◽  
Manuel Seeger ◽  
Ali Aït Hssaine ◽  
...  

Abstract. The endemic argan tree (Argania spinosa) populations in southern Morocco are highly degraded due to overbrowsing, illegal firewood extraction and the expansion of intensive agriculture. Bare areas between the isolated trees increase due to limited regrowth; however, it is unknown if the trees influence the soil of the intertree areas. Hypothetically, spatial differences in soil parameters of the intertree area should result from the translocation of litter or soil particles (by runoff and erosion or wind drift) from canopy-covered areas to the intertree areas. In total, 385 soil samples were taken around the tree from the trunk along the tree drip line (within and outside the tree area) and the intertree area between two trees in four directions (upslope, downslope and in both directions parallel to the slope) up to 50 m distance from the tree. They were analysed for gravimetric soil water content, pH, electrical conductivity, percolation stability, total nitrogen content (TN), content of soil organic carbon (SOC) and C/N ratio. A total of 74 tension disc infiltrometer experiments were performed near the tree drip line, within and outside the tree area, to measure the unsaturated hydraulic conductivity. We found that the tree influence on its surrounding intertree area is limited, with, e.g., SOC and TN content decreasing significantly from tree trunk (4.4 % SOC and 0.3 % TN) to tree drip line (2.0 % SOC and 0.2 % TN). However, intertree areas near the tree drip line (1.3 % SOC and 0.2 % TN) differed significantly from intertree areas between two trees (1.0 % SOC and 0.1 % TN) yet only with a small effect. Trends for spatial patterns could be found in eastern and downslope directions due to wind drift and slope wash. Soil water content was highest in the north due to shade from the midday sun; the influence extended to the intertree areas. The unsaturated hydraulic conductivity also showed significant differences between areas within and outside the tree area near the tree drip line. This was the case on sites under different land usages (silvopastoral and agricultural), slope gradients or tree densities. Although only limited influence of the tree on its intertree area was found, the spatial pattern around the tree suggests that reforestation measures should be aimed around tree shelters in northern or eastern directions with higher soil water content or TN or SOC content to ensure seedling survival, along with measures to prevent overgrazing.


2021 ◽  
Author(s):  
Svenja Hoffmeister ◽  
Rafael Bohn Reckziegel ◽  
Florian Kestel ◽  
Rebekka Maier ◽  
Jonathan P. Sheppard ◽  
...  

&lt;p&gt;Water limitation provides the potential to hinder the productivity of agricultural systems especially in arid and semi-arid regions. In agroforestry systems interactions between trees and crops range from mutually beneficial to critically competing, shaping the demand for resources, such as water. In this study, we investigated the hydrological effects of an Italian Alder (Alnus cordata) windbreak on an irrigated blackberry plantation near Stellenbosch, South Africa. We determine the key components of the water budget in the system and compare them at two positions: alongside the windbreak, and amongst the crop away from the windbreak&amp;#8217;s influence.&lt;/p&gt;&lt;p&gt;We measured soil water content depth profiles in the summer months, from October 2019 to March 2020, in both locations with four consecutive time domain reflectometry (TDR) tube sensors, each integrating over 20 cm depth. Potential evapotranspiration (ET) was estimated from site based meteorological observations. We surveyed and classified the local soil, and defined soil chemical and physical properties (e.g. texture, matrix potential). The windbreak structure was measured on a single tree basis (e.g. tree height, volume and biomass) using manual and terrestrial laser scanning methodologies.&lt;/p&gt;&lt;p&gt;The data indicate that high potential ET, caused by high summer temperatures and strong winds, dominates the water budget at the study site, exceeding the water input of the drip irrigation. We found differences in the water dynamics between the two sites, e.g. greater soil water content at greater distances from the windbreak. Possible reasons are: (1) the water demand of trees increases underground competition for water, and/or; (2) microclimatic conditions closer to the windbreak increase ET. Modelling of the windbreak influence on the ET and further analysis of water fluxes will be conducted as next steps to combine the results from the sensors and the joint field campaign.&lt;/p&gt;


2013 ◽  
Vol 864-867 ◽  
pp. 2545-2549
Author(s):  
Na Zhang ◽  
De Ming Jiang ◽  
Toshio Oshid

Based on the soil water balance theory, soil water dynamics and evapotranspiration (ET) of artificial sand-fixing Caragana microphylla and Caragana korshinskii shrubs with three different densities were researched in Horqin sandy land during the growing season. Results showed that mean soil water content of three shrub densities changed with time, different density caused spatial changes of soil water content in the deep soil horizon, but brought little influence on soil water temporal trends. The annual ET/P ratio varied between 83.21% and 99.6% for three shrub densities and the ET was not continually increased along with increase in shrub density. Based on the comprehensive analysis of soil water content, ET, and plant coverage for three shrub densities, the optimum density of C. microphylla and C. korshinskii shrubs (20 years old) in the study area could be about 1000 trees/ha. The findings were helpful for vegetation restoration in Horqin sandy land of China.


Sign in / Sign up

Export Citation Format

Share Document