scholarly journals Historical Trajectory in Vegetation Cover in Northeastern Namibia Based on AVHRR Satellite Imagery (1982–2015)

Land ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 160
Author(s):  
Augustine-Moses Gaavwase Gbagir ◽  
Yitagesu Tekle Tegegne ◽  
Alfred Colpaert

The negative impact of the reduction of vegetation cover is already being felt in the Zambezi Region in northeastern Namibia. The region has been undergoing various land cover changes in the past decades. To understand the historical trend of vegetation cover (increase or decrease), we analyzed 8-km resolution Global Inventory Monitoring and Modeling Studies (GIMMS) from the Advanced Very High Resolution Radiometer (AVHRR) and 0.25° × 0.25° (resampled to 8 km) resolution Global Precipitation Climatology Center (GPCC). We used the Time Series Segmented Residual Trends (TSS-RESTREND) method. We found that the general trajectory of vegetation cover was negative. Pixel-wise analysis and visual interpretation of historical images both revealed clear signs of vegetation cover change. We observed a single breakpoint in the vegetation trajectory which correlated to the 1991–1992 drought in southern Central Africa. Potential drivers of land cover change are the (il)legal expansion of subsistence farming, population growth, and wood extraction. These findings will serve as a reference for decision makers and policymakers. To better understand the human-induced land cover change at the micro scale and sub-regional level, we recommend using higher resolution remote sensing datasets and historical documents to assess the effect of demographic change, disease, civil unrest, and war.

Author(s):  
Njini Loveline Munjeb ◽  
Yerima Bernard Palmer Kfuban ◽  
Marie-Louise Tientcheu Avana ◽  
Julius Tata Nfor ◽  
Enang Kogge Rogers

Land cover change is a growing concern around the world. This is especially true for protected areas which are rapidly degrading owing to pressure from anthropogenic activities. The aim of this study was to analyze land cover change for the periods 1980, 2008 and 2020 and its implication on the environment in and around the Dja Biosphere Reserve in south eastern Cameroon. This was done using remote sensing and geographical information systems techniques to quantify and measure the extent of land cover change in the study area for forty years. Household surveys were equally undertaken through the administration of questionnaires to farmers in villages located within the Dja Biosphere Reserve. Collected data was analyzed through the use of GIS software as well as Microsoft Excel. From the land cover maps, four classes were found: dense forest, cultivated areas, water surface, and buildings and bare soils. The transition matrix between 1980 and 2008 showed that 6477.81 ha of dense forest was lost to cultivated areas and between 2008 and 2020, 722.84 ha of dense forest was lost. Between 1980 and 2008 cultivated areas lost 0.07% and gain 0.72% between 2008 and 2020. Building and bare soils increase by 0.28% between 1980 and 2020. The Kappa index of agreement was 0.91 % between 1980 and 2008 and 0.88% between 2008 and 2020. Slash and burn agriculture (43.3%), hunting (36.3%) and harvesting of tree-based products (20.3%) were identified by farmers as the human activities with the most negative impact on the reserve. Results revealed that, there are still opportunities to safe this vulnerable reserve from the negative effects of land cover change through the practice of agroforestry.


2018 ◽  
Author(s):  
Gregory Duveiller ◽  
Giovanni Forzieri ◽  
Eddy Robertson ◽  
Wei Li ◽  
Goran Georgievski ◽  
...  

Abstract. Land use and land cover change (LULCC) alter the biophysical properties of the Earth's surface. The associated changes in vegetation cover can perturb the local surface energy balance, which in turn can affect the local climate. The sign and magnitude of this change in climate depends on the specific vegetation transition, its timing and location, as well as on the background climate. Land surface models (LSMs) can be used to simulate such land-climate interactions and study their impact in past and future climates, but their capacity to model biophysical effects accurately across the globe remain unclear due to the complexity of the phenomena. Here we present a framework to evaluate the performance of such models with respect to a dedicated dataset derived from satellite remote sensing observations. Idealized simulations from four LSMs (JULES, ORCHIDEE, JSBACH and CLM) are combined with satellite observations to analyse the changes in radiative and turbulent fluxes caused by 15 specific vegetation cover transitions across geographic, seasonal and climatic gradients. The seasonal variation in net radiation associated with land cover change is the process that models capture best, whereas LSMs perform poorly when simulating spatial and climatic gradients of variation in latent, sensible and ground heat fluxes induced by land cover transitions. We expect that this analysis will help identify model limitations and prioritize efforts in model development as well as to inform where consensus between model and observations is already met, ultimately helping to improve the robustness and consistency of model simulations to better inform land-based mitigation and adaptation policies. The dataset is available at: https://doi.org/10.5281/zenodo.1182145.


2018 ◽  
Vol 10 (3) ◽  
pp. 1265-1279 ◽  
Author(s):  
Gregory Duveiller ◽  
Giovanni Forzieri ◽  
Eddy Robertson ◽  
Wei Li ◽  
Goran Georgievski ◽  
...  

Abstract. Land use and land cover change (LULCC) alter the biophysical properties of the Earth's surface. The associated changes in vegetation cover can perturb the local surface energy balance, which in turn can affect the local climate. The sign and magnitude of this change in climate depends on the specific vegetation transition, its timing and its location, as well as on the background climate. Land surface models (LSMs) can be used to simulate such land–climate interactions and study their impact in past and future climates, but their capacity to model biophysical effects accurately across the globe remain unclear due to the complexity of the phenomena. Here we present a framework to evaluate the performance of such models with respect to a dedicated dataset derived from satellite remote sensing observations. Idealized simulations from four LSMs (JULES, ORCHIDEE, JSBACH and CLM) are combined with satellite observations to analyse the changes in radiative and turbulent fluxes caused by 15 specific vegetation cover transitions across geographic, seasonal and climatic gradients. The seasonal variation in net radiation associated with land cover change is the process that models capture best, whereas LSMs perform poorly when simulating spatial and climatic gradients of variation in latent, sensible and ground heat fluxes induced by land cover transitions. We expect that this analysis will help identify model limitations and prioritize efforts in model development as well as inform where consensus between model and observations is already met, ultimately helping to improve the robustness and consistency of model simulations to better inform land-based mitigation and adaptation policies. The dataset consisting of both harmonized model simulation and remote sensing estimations is available at https://doi.org/10.5281/zenodo.1182145.


2021 ◽  
Vol 305 ◽  
pp. 04001
Author(s):  
Sukisno ◽  
Widiatmaka ◽  
Januar J. Purwanto ◽  
Bambang Pramudya N ◽  
Khursatul Munibah

This research was conducted to review land use land cover change in the catchment area of Musi Hydropower Plant in Bengkulu Province. The data used in this research is land use land cover map year 2000 to 2018 from Ministry of Environment and Forestry of the Republic of Indonesia. The analyse was done by overlaying time series map of land use land cover map from 2000 to 2018 on the map of forest area. The result shows that primary dryland forest degradated significantly, around 568 ha less than 20 years. In the other side, settlements and built-up area significantly increase, 1.331 ha in 20 years. Meanwhile, the land use of agricultural dry land mixed with shrubs, in agregat decreased by 1.078 ha. The area of agricultural dry land mixed with shrubs was increase during period of 2000 to 2014, and then slightly decrease in the period of 2014 to 2018. Land use changes on the catchment area have negative impact on the quality of environmental services, such as erosion and sedimentation on the reservoir of Musi Hydropower Plant. Intervention needed to reduce the negative impact of the land use change on ecosystem services.


2019 ◽  
Vol 11 (6) ◽  
pp. 1788 ◽  
Author(s):  
Cheng Duan ◽  
Peili Shi ◽  
Minghua Song ◽  
Xianzhou Zhang ◽  
Ning Zong ◽  
...  

Land use and land cover change (LUCC) is an important driver of ecosystem function and services. Thus, LUCC analysis may lay foundation for landscape planning, conservation and management. It is especially true for alpine landscapes, which are more susceptible to climate changes and human activities. However, the information on LUCC in sacred landscape is limited, which will hinder the landscape conservation and development. We chose Kailash Sacred Landscape in China (KSL-China) to investigate the patterns and dynamics of LUCC and the driving forces using remote sensing data and meteorological data from 1990 to 2008. A supervised classification of land use and land cover was established based on field survey. Rangelands presented marked fluctuations due to climatic warming and its induced drought, for example, dramatic decreases were found in high- and medium-cover rangelands over the period 2000–2008. And recession of most glaciers was also observed in the study period. Instead, an increase of anthropogenic activities accelerated intensive alteration of land use, such as conversion of cropland to built-up land. We found that the change of vegetation cover was positively correlated with growing season precipitation (GSP). In addition, vegetation cover was substantially reduced along the pilgrimage routes particularly within 5 km of the routes. The findings of the study suggest that climatic warming and human disturbance are interacted to cause remarkable LUCC. Tourism development was responsible land use change in urban and pilgrimage routes. This study has important implications for landscape conservation and ecosystem management. The reduction of rangeland cover may decrease the rangeland quality and pose pressure for the carrying capacity of rangelands in the KSL-China. With the increasing risk of climate warming, rangeland conservation is imperative. The future development should shift from livestock-focus animal husbandry to service-based ecotourism in the sacred landscape.


2017 ◽  
Vol 50 (1) ◽  
pp. 626-635 ◽  
Author(s):  
Jean-François Mas ◽  
Richard Lemoine-Rodríguez ◽  
Rafael González-López ◽  
Jairo López-Sánchez ◽  
Andrés Piña-Garduño ◽  
...  

Author(s):  
Reda Rihane ◽  
Abdellatif Khattabi ◽  
Nabil Rifai ◽  
Said Lahssini

Ourika basin in Morocco has very steep slopes with impermeable ground favoring water flows and flooding. History has shown deadly flood events. Floods are becoming recurrent and exacerbated not only by human activities that degrade soil and vegetation cover, accelerating erosion and quick water flows, but also by climate change. In fact, the basin has experienced a very strong dynamic of its vegetation cover, during the last 30 years, and has been subject to climate change impacts. This study is devoted to evaluating the impact of land cover change, mainly vegetation cover, on hydrological functioning of the basin. The HEC-HMS model was used to simulate basin hydrological response, according to two scenarios of land cover change. The first scenario simulates deforestation and urbanization impacts on peak flows, showing an increase of the peak flow by 31.68%. The second evaluates the impact of both reforestation actions and proscription of forest harvesting in the region. The simulated results showed a decline of 17.25% in peak flows, except for heavy precipitation events.


2019 ◽  
Vol 39 (17) ◽  
Author(s):  
李艳菊 LI Yanju ◽  
丁建丽 DING Jianli ◽  
张钧泳 ZHANG Junyong ◽  
武鹏飞 WU Pengfei

2020 ◽  
Author(s):  
Furong Li ◽  
Marie-José Gaillard ◽  
Shinya Sugita ◽  
Xianyong Cao ◽  
Ulrike Herzschuh ◽  
...  

<p>Quantification of the effects of human-induced vegetation-cover change on past (present and future) climate is still a subject of debate. Our understanding of these effects greatly depends on the availability of empirical reconstructions of past anthropogenic vegetation cover. Such reconstructions can be used to evaluate Anthropogenic Land-Cover Change (ALCC) scenarios for the past (such as HYDE and KK), and simulated past vegetation using dynamic vegetation models such as LPJGUESS. In this context, China is an important region given that agriculture started already in early Holocene, and expanded rapidly over large areas throughout the eastern part of the country. Quantitative reconstructions of plant cover based on pollen data has long been a challenge. The REVEALS model (Sugita, 2007) is one of the approaches for quantitative reconstruction of past plant cover that has been applied, tested, and validated in many regions of the world over the last years. Relative pollen productivity (RPP) of plant taxa is a key parameter required for REVEALS applications. A synthesis of all RPP estimates available in temperate China is published in Li et al. (2018). These RPPs were used with pollen records from lakes and bogs to produce REVEALS-based estimates of Holocene regional vegetation-cover change in temperate China. In order to interpret the REVEALS reconstructions in terms of climate or anthropogenic land-cover change, we compared the REVEALS estimates of vegetation-cover change with existing palaeoclimatic data and archaeological evidences on human history and past land-use change. We also compared the REVEALS estimates with fractions of plant functional types simulated by LPJGUESS and ALCC scenarios from HYDE and KK.</p><p>The results suggest that the REVEALS-based values of plant cover strongly differ from the pollen percentages and provide new insights on past changes in plant composition and vegetation dynamics over the Holocene. Human-induced deforestation is highest in eastern China with 3 major phases at ca. 5500, 3000 and 2000 calibrated years before present. Disentangling human-induced from climate-induced pollen-based open-land cover remains a challenge. However,  thorough comparison of the REVEALS reconstructions with historical and archaeological information on settlement and land-use history, and with palaeoclimate reconstructions provide important clues to the question. This study is a contribution to PAGES LandCover6k.</p><p><em>References: Li et al., 2018. Front Plant Sci; Sugita, 2007. Holocene.</em></p>


Sign in / Sign up

Export Citation Format

Share Document