scholarly journals Characterization of High-Power Turbomachinery Tilting Pad Journal Bearings: First Results Obtained on a Novel Test Bench

Lubricants ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
Enrico Ciulli ◽  
Paola Forte ◽  
Mirko Libraschi ◽  
Lorenzo Naldi ◽  
Matteo Nuti
Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 273
Author(s):  
Enrico Ciulli ◽  
Riccardo Ferraro ◽  
Paola Forte ◽  
Alice Innocenti ◽  
Matteo Nuti

The paper deals with the experimental characterization of different 280 mm diameter tilting pad journal bearings for turbomachines using a dedicated test rig. The test articles were a 5-pad Direct Lube Rocker Pivot bearing, a 5-pad Flooded Rocker Pivot bearing, and a 4-pad Flooded Ball and Socket Pivot bearing. The three bearings were tested in their specific design range of operating conditions. Their static and dynamic behavior was investigated as a function of different operating parameters. In particular, the assumed journal center eccentricity and pads temperature were measured, and the power loss determined as a function of angular speed for different static loads. Dynamic stiffness and damping coefficients were determined as a function of excitation frequency for different speeds and loads. The experimental results were compared showing the influence of the operating parameters, configuration, and oil supply.


2018 ◽  
Vol 127 ◽  
pp. 276-287 ◽  
Author(s):  
Enrico Ciulli ◽  
Paola Forte ◽  
Mirko Libraschi ◽  
Matteo Nuti

Author(s):  
Mengxuan Li ◽  
Chaohua Gu ◽  
Xiaohong Pan ◽  
Shuiying Zheng ◽  
Qiang Li

A new dynamic mesh algorithm is developed in this paper to realize the three-dimensional (3D) computational fluid dynamics (CFD) method for studying the small clearance transient flow field of tilting pad journal bearings (TPJBs). It is based on a structured grid, ensuring that the total number and the topology relationship of the grid nodes remain unchanged during the dynamic mesh updating process. The displacements of the grid nodes can be precisely recalculated at every time step. The updated mesh maintains high quality and is suitable for transient calculation of large journal displacement in FLUENT. The calculation results, such as the static equilibrium position and the dynamic characteristic coefficients, are consistent with the two-dimensional (2D) solution of the Reynolds equation. Furthermore, in the process of transient analysis, under conditions in which the journal is away from the static equilibrium position, evident differences appear between linearized and transient oil film forces, indicating that the nonlinear transient calculation is more suitable for studying the rotor-bearing system.


2021 ◽  
pp. 1-24
Author(s):  
Gudeta Berhanu Benti ◽  
David Jose Rondon ◽  
Rolf Gustavsson ◽  
Jan-Olov Aidanpää

Abstract In this paper, the dynamics of tilting pad journal bearings with four and eight pads are studied and compared experimentally and numerically. The experiments are performed on a rigid vertical rotor supported by two identical bearings. Two sets of experiments are carried out under similar test setup. One set is performed on a rigid rotor with two four-pad bearings, while the other is on a rigid rotor with two eight-pad bearings. The dynamic properties of the two bearing types are compared with each other by studying the unbalance response of the system at different rotor speeds. Numerically, the test rig is modeled as a rigid rotor and the bearing coefficients are calculated based on Navier-Stokes equation. A nonlinear bearing model is developed and used in the steady state response simulation. The measured and simulated displacement and force orbits show similar patterns for both bearing types. Compared to the measurement, the simulated mean value and range (peak-to-peak amplitude) of the bearing force deviate with a maximum of 16 % and 38 %, respectively. It is concluded that, unlike the eight-pad TPJB, the four-pad TPJB excite the system at the third and fifth-order frequencies, which are due to the number of pads, and the amplitudes of these frequencies increase with the rotor speed.


Sign in / Sign up

Export Citation Format

Share Document