scholarly journals Particle Entrapment in Line Elastohydrodynamic Contacts and the Influence of Intermolecular (van der Waals) Forces

Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 60
Author(s):  
George K. Nikas

A metallic particle passing through concentrated rolling-sliding contacts is often linked to surface damage for particles larger than the available gap. At the instant of particle pinching, force balancing dictates particle entrapment and passing through the contact or rejection. It is vital to include all major forces in this process. This study revisits the analytical entrapment model previously published by the author for spherical micro-particles by incorporating a force so far overlooked in related studies, namely the van der Waals intermolecular force and, additionally, surface roughness effects. In conjunction with particle mechanical and fluid forces, this provides an almost complete set to use for correct force balancing. A parametric analysis shows the effect of several geometrical, mechanical, rheological, and surface parameters on spherical particle entrapment and reveals the significance of the van der Waals force for particles smaller than about 5–10 μm in diameter.

Author(s):  
George K Nikas

The entrapment/rejection process of spherical, rigid microparticles in elliptical, rough elastohydrodynamic contacts is modelled. An earlier model of the author is extended to include van der Waals intermolecular forces, in addition to mechanical (reaction and friction) and fluid–particle forces. Surface roughness effects are also introduced in terms of the intermolecular force formulation and in the microscale friction (particle–asperity) sub-model. Possibilities related to particle entry into a contact are quantified by weight factors and performance indices. A total entrapment index is defined and linked to the probability of particle entrapment. A parametric analysis investigates the effect of the intermolecular particle force on the entrapment probability by varying the contact load, lubricant viscosity, elastic modulus of the contacting solids, contact velocity and the macroscopic (Coulomb) coefficient of friction.


2016 ◽  
Vol 99 ◽  
pp. 305-311 ◽  
Author(s):  
Ilenia Farina ◽  
Francesco Fabbrocino ◽  
Francesco Colangelo ◽  
Luciano Feo ◽  
Fernando Fraternali

2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


2013 ◽  
Vol 20 (12) ◽  
pp. 2261-2269 ◽  
Author(s):  
Gaurav Pendharkar ◽  
Raghavendra Deshmukh ◽  
Rajendra Patrikar

1969 ◽  
Vol 6 (8) ◽  
pp. 955-957 ◽  
Author(s):  
R. G. HERING ◽  
T. F. SMITH

1999 ◽  
Vol 27 (5) ◽  
pp. 450-460 ◽  
Author(s):  
P.-Å. Krogstadt ◽  
R.A. Antonia

Sign in / Sign up

Export Citation Format

Share Document