scholarly journals Delamination Study in Edge Trimming of Basalt Fiber Reinforced Plastics (BFRP)

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1418 ◽  
Author(s):  
Maria Navarro-Mas ◽  
Juan García-Manrique ◽  
Maria Meseguer ◽  
Isabel Ordeig ◽  
Ana Sánchez

Although there are many machining studies of carbon and glass fiber reinforced plastics, delamination and tool wear of basalt fiber reinforced plastics (BFRP) in edge trimming has not yet studied. This paper presents an end milling study of BFRP fabricated by resin transfer molding (RTM), to evaluate delamination types at the top layer of the machined edge with different cutting conditions (cutting speed, feed rate and depth of cut) and fiber volume fraction (40% and 60%). This work quantifies delamination types, using a parameter Sd/L, that evaluates the delamination area (Sd) and the length (L), taking into account tool position in the yarn and movement of yarns during RTM process, which show the random nature of delamination. Delamination was present in all materials with 60% of fiber volume. High values of tool wear did not permit to machine the material due to an excessive delamination. Type II delamination was the most usual delamination type and depth of cut has influence on this type of delamination.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5326
Author(s):  
María Dolores Navarro-Mas ◽  
María Desamparados Meseguer ◽  
Joaquín Lluch-Cerezo ◽  
Juan Antonio García-Manrique

Delamination is one of the main problems that occur when machining fiber-reinforced composite materials. In this work, Types I and II of delamination are studied separately in edge trimming of basalt fiber reinforced plastic (BFRP). For this purpose, one-dimensional and area delamination parameters are defined. One-dimensional parameters (Wa and Wb) allow to know average fibers length while the analysis of area delamination parameters (Sd) allow to evaluate delamination density. To study delamination, different tests are carried out modifying cutting parameters (cutting speed, feed per tooth and depth of cut) and material characteristics (fiber volume fraction and fiber orientation). Laminates with a lower fiber volume fraction do not present delamination. Attending to one-dimensional parameters it can be concluded that Type II delamination is more important than Type I and that a high depth of cut generates higher values of delamination parameters. An analysis of variance (ANOVA) is performed to study area parameters. Although delamination has a random nature, for each depth of cut, more influence variables in area delamination are firstly, feed per tooth and secondly, cutting speed.


2014 ◽  
Vol 592-594 ◽  
pp. 333-338 ◽  
Author(s):  
R. Prakash ◽  
V. Krishnaraj ◽  
G.S. Tarun ◽  
M. Vijayagopal ◽  
G.Denesh Kumar

Carbon fiber reinforced plastics (CFRP) are used as structural materials in automotive and aerospace industries because of its superior properties like high strength to weight ratio and high stiffness to weight ratio. Though most CFRP products are produced to near net shape by different composite manufacturing methods, some post machining processes such as drilling, edge trimming are required. In order to shape and smooth the edges of the composite components the edge trimming plays a major role. This research gave the approach of studying the effect of temperature and tool wear on surface roughness obtained during edge trimming of uni directional CFRP with different fiber orientations and quasi isotropic CFRP with the sequence of [90/-45/0/45/90/-45/0/45]S.The effect of coating of tool on tool wear and surface roughness were also studied.


Sign in / Sign up

Export Citation Format

Share Document