scholarly journals Structure-Property Relationships in Hybrid Cellulose Nanofibrils/Nafion-Based Ionic Polymer-Metal Composites

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1269 ◽  
Author(s):  
Colin Noonan ◽  
Mehdi Tajvidi ◽  
Ali H. Tayeb ◽  
Mohsen Shahinpoor ◽  
Seyed Ehsan Tabatabaie

Herein, we report the production of ionic polymer-metal composites (IPMCs) hybridized with cellulose nanofibrils (CNF) as a partial substitute for Nafion®. The aim is not only to reduce the production cost and enhance respective mechanical/thermal properties but also to bestow a considerable degree of biodegradability to such products. Formulations with different CNF/Nafion® ratios were produced in a thin-film casting process. Crack-free films were air-dried and plated by platinum (Pt) through an oxidation-reduction reaction. The produced hybrids were analyzed in terms of thermal stability, mechanical and morphological aspects to examine their performance compared to the Nafion-based IPMC prior to plating process. Results indicated that films with higher CNF loadings had improved tensile strengths and elastic moduli but reduced ductility. Thermogravimetric analysis (TGA) showed that the incorporation of CNF to the matrix reduced its thermal stability almost linearly, however, the onset of decomposition point remained above 120 °C, which was far above the temperature the composite membrane is expected to be exposed to. The addition of a cross-linking agent to the formulations helped with maintaining the integrity of the membranes during the plating process, thereby improving surface conductivity. The focus of the current study was on the physical and morphological properties of the films, and the presented data advocate the potential utilization of CNF as a nontoxic and sustainable bio-polymer for blending with perfluorosulfonic acid-based co-polymers, such as Nafion®, to be used in electroactive membranes.

2009 ◽  
Vol 419-420 ◽  
pp. 785-788
Author(s):  
Xiu Fen Ye ◽  
Yu Dong Su ◽  
Shu Xiang Guo

An Ionic polymer metal composites (IPMC) actuated 3D swimming microrobot is presented first. Inspired by biologic fins, passive plastic fin is attached to the IPMC strip to increase the thrust. Infrared sensors are equipped for wireless control and autonomous navigation. Then propulsive efficiency analyses are carried out. From the water electrolysis influence analysis of the IPMC, the best working voltage is confirmed. Finally, a two parts IPMC actuator is presented to improve the propulsive efficiency of the microrobot after the analysis of propulsive efficiency of caudal fin.


Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2015 ◽  
Vol 38 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Gang Zhao ◽  
Zhuangzhi Sun ◽  
Huajun Guo ◽  
Jinxing Zheng ◽  
Haojun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document