scholarly journals Influence of Welded Pores on Very Long-Life Fatigue Failure of the Electron Beam Welding Joint of TC17 Titanium Alloy

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1825 ◽  
Author(s):  
Fulin Liu ◽  
Hong Zhang ◽  
Hanqing Liu ◽  
Yao Chen ◽  
Khan Muhammad Kashif ◽  
...  

The electron beam welding process is widely used in the connection among titanium alloy material parts of aero-engines. Its mechanical properties need to meet the requirements of long life and high reliability. In this paper, the static strength and the fatigue failure behavior of the electron beam weldments of TC17 titanium alloy were investigated experimentally under low amplitude high frequency (20 kHz), and the mechanical response and failure mechanism under different external loading conditions were analyzed. In summary, the samples were found to have anisotropic microstructure. The tensile strength of the PWHT of TC17 EBW joint was ~4.5% lower than that of the base metal. Meanwhile, compared with the base metal, the fatigue strength was reduced by 45.5% at 109 cycles of fatigue life. The fracture analysis showed that the fatigue failure of the welded joint of TC17 alloy was caused by the welded pores and the fatigue cracks initiated from the welded pores. A fine granular area (FGA) was observed around the crack initiation region. The existence of pores caused the stress intensity factor of the fine granular area (KFGA) to be inversely proportional to the fatigue life. The KFGA calculation formula was modified and the fatigue crack propagation threshold of the welded joint of TC17 alloy was calculated (3.62 MPa·m1/2). Moreover, the influences of the effective size and the relative depth of the pores on the very long fatigue life of the electron beam welded joint of TC17 titanium alloy were discussed.

2005 ◽  
Vol 475-479 ◽  
pp. 821-824
Author(s):  
J.Y. Zou ◽  
Yu You Cui ◽  
Rui Yang

Electron beam (EB) welding of Ti-24Al-17Nb-0.5Mo (at.%) alloy and the effects of postweld heat treatments (PWHT) were studied. Through optimizing the welding parameters, defect-free welding joint was obtained. For the as-welded joint, the fusion zone (FZ) consisted of predominant β and occasional α2 within β grains. Microhardness of FZ was higher than that of the base metal (BM) and that of the heat affected zone (HAZ) was between that of BM and FZ. PWHTs greatly modified the microstructures and mechanical properties of the weld zone. PWHTs at both 820oC and 900oC yielded fine acicular laths in FZ leading to severe brittleness of the weld. Appropriate microstructures and phase combination were obtained by PWHT at 1000oC for 2 h, and room-temperature tensile strength reached the value of the base metal after the same thermal cycle.


2011 ◽  
Vol 287-290 ◽  
pp. 2181-2184
Author(s):  
Bing Wu ◽  
Zhi Yong Mao ◽  
Jian Xun Zhang

Fatigue test of AF1410 steel and two thickness of electron beam have been done, and fatigue properties of the base metal and EB-welded joints have been studied. The results showed that fatigue limit of electron beam welded joints was close to that of base metal under this test conditions, and the welded thickness has little effect on S-N curves of electron beam welded samples under this test conditions. From SEM fracture morphology, it can be seen that fracture morphology of the welded samples was not obvious different form base metal. In the instant-off area of electron beam welded sample, there was dimple-like morphology showing good ductility.


2021 ◽  
Vol 132 ◽  
pp. 107115
Author(s):  
Duqiang Ren ◽  
Yun Jiang ◽  
Xiaoan Hu ◽  
Xianzheng Zhang ◽  
Xiaoping Xiang ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
pp. 33-36
Author(s):  
V.M. Nesterenkov ◽  
◽  
L.A. Kravchuk ◽  
M.O. Rusynyk ◽  
◽  
...  

2021 ◽  
Vol 1027 ◽  
pp. 149-154
Author(s):  
Sen Dong Gu ◽  
Ji Peng Zhao ◽  
Rui Jie Ouyang ◽  
Yong Hong Zhang

In the present study, TA1 titanium alloy sheets with a thickness of 0.8mm were welded by electron beam welding. Microstructure of the welded region was investigated using optical microscope and electron backscattered diffraction. Then, the tensile test was conducted to analyse the tensile behavior of the welded sheets as well as the fractography of the fracture surfaces. It is shown that the mean grain size in the heat-affected zone is smaller than that in the fusion zone and base material. The strength of the base metal is lower than that of the fusion zone and heat-affected zone. The average values of the yield strength, tensile strength and elongation of the tensile specimens are 224MPa, 335MPa and 35%, respectively. In addition, the tensile specimens of the welded sheets suffer both ductile and brittle deformation during the tensile tests.


Sign in / Sign up

Export Citation Format

Share Document