scholarly journals Microstructure and Mechanical Properties of Al–(12-20)Si Bi-Material Fabricated by Selective Laser Melting

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2126 ◽  
Author(s):  
Shikai Zhang ◽  
Pan Ma ◽  
Yandong Jia ◽  
Zhishui Yu ◽  
Rathinavelu Sokkalingam ◽  
...  

In this study, a combination of Al–12Si and Al–20Si (Al–(12-20)Si) alloys was fabricated by selective laser melting (SLM) as a result of increased component requirements such as geometrical complexity and high dimensional accuracy. The microstructure and mechanical properties of the SLM Al–(12-20)Si in as-produced as well as in heat-treated conditions were investigated. The Al–(12-20)Si interface was in the as-built condition and it gradually became blurry until it disappeared after heat treatment at 673 K for 6 h. This Al–(12-20)Si bi-material displayed excellent mechanical properties. The hardness of the Al–20Si alloy side was significantly higher than that of the Al–12Si alloy side and the disparity between both sides gradually decreased and tended to be consistent after heat treatment at 673 K for 6 h. The tensile strength and elongation of the Al–(12-20Si) bi-material lies in between the Al–12Si and Al–20Si alloys and fracture occurs in the Al–20Si side. The present results provide new insights into the fabrication of bi-materials using SLM.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3668
Author(s):  
Tian Xia ◽  
Rui Wang ◽  
Zhongnan Bi ◽  
Guoliang Zhu ◽  
Qingbiao Tan ◽  
...  

Additive manufacturing (AM) of nickel-based superalloys is of high interest for application in complex hot end parts. However, it has been widely suggested that the microstructure-properties of the additive manufacturing processed superalloys are not yet fully clear. In this study, the GTD222, an important superalloy for high-temperature hot-end part, were prepared using selective laser melting and then subjected to heat treatment. The microstructure evolution of the GTD222 was investigated and the mechanical properties of heat treated GTD222 were tested. The results have shown that the grain size of the heat treated GTD222 was close to its as-built counterparts. Meanwhile, a large amount of γ’ and nano-scaled carbides were precipitated in the heat treated GTD222. The microstructure characteristics implied that the higher strength of the heat treated GTD222 can be attributed to the γ’ and nano-scaled carbides. This study provides essential microstructure and mechanical properties information for optimizing the heat treatment process of the AM processed GTD222.


2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2017 ◽  
Vol 44 (9) ◽  
pp. 0902001
Author(s):  
肖振楠 Xiao Zhennan ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
张长东 Zhang Changdong ◽  
杨涛 Yang Tao

2020 ◽  
Vol 26 (10) ◽  
pp. 1739-1749
Author(s):  
Saad Waqar ◽  
Jiangwei Liu ◽  
Qidong Sun ◽  
Kai Guo ◽  
Jie Sun

Purpose This paper aims to investigate the influence of different post-annealing cooling conditions, i.e. furnace cooling (heat treatment (HT) 1 – slow cooling) and air cooling (HT 2 – fast cooling), on the microstructure and mechanical properties of selective laser melting (SLM) built austenitic 316L stainless steel (SS). Design/methodology/approach Three sets of 316L SS samples were fabricated using a machine standard scanning strategy. Each set consists of three tensile samples and a cubic sample for microstructural investigations. Two sets were subsequently subjected to annealing HT with different cooling conditions, i.e. HT 1 and HT 2, whereas one set was used in the as-built (AB) condition. The standard metallographic techniques of X-ray diffraction, scanning electron microscopy and electron back-scattered diffraction were used to investigate the microstructural variations induced by different cooling conditions. The resultant changes in mechanical properties were also investigated. Findings The phase change of SLM fabricated 316L was observed to be independent of the investigated cooling conditions and all samples consist of austenite phase only. Both HT 1 and HT 2 lead to dissolved characteristic melt pools of SLM. Noticeable increase in grain size of HT 1 and HT 2 samples was also observed. Compared with AB samples, the grain size of HT 1 and HT 2 was increased by 12.5% and 50%, respectively. A decreased hardness and strength, along with an increased ductility was also observed for HT 2 samples compared with HT 1 and AB samples. Originality/value From previous studies, it has been noticed that most investigations on HT of SLM fabricated 316L were mainly focused on the HT temperature or holding time. However, the post-HT cooling rate is also an equally important factor in deciding the microstructure and mechanical properties of heat-treated components. Therefore, this paper investigates the influence of different post-annealing cooling conditions on microstructure and mechanical properties of SLM fabricated 316L components. This study provides a foundation for considering the post-HT cooling rate as an influential parameter that controls the properties of heat-treated SLM components.


Sign in / Sign up

Export Citation Format

Share Document