scholarly journals Effects of Vehicle-Induced Vibrations on the Tensile Performance of Early-Age PVA-ECC

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2652 ◽  
Author(s):  
Xiaodong Zhang ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Xiaoxiao Wang ◽  
Huiwen Wang

Polyvinyl alcohol-engineering cementitious composites (PVA-ECCs) have been widely applied in bridge deck repairing or widening, and a common practice is that a portion of the bridge is left open to traffic while the closed portion is constructed, which exposes the early-age PVA-ECC to vehicle-induced vibrations. However, whether vehicle-induced vibrations affect the performance of early-age PVA-ECC remains unknown. The purpose of this study was to conduct laboratory test programs to investigate to what extent vehicle-induced vibrations soon after installation affects the tensile performance of the PVA-ECC. A self-improved device was used to simulate the vehicle-induced vibrations, and after vibrating with the designed variables, both a uniaxial tensile test and a grey correlation analysis were performed. The results indicated that the effects of vehicle-induced vibrations on the tensile performance of early-age PVA-ECCs were significant, and they generally tended to be negative. In particular, for all of the vibrated PVA-ECC specimens, the most negative effects occurred when vibration occurred during the period between the initial set and the final set. We concluded that although vehicle-induced vibrations during the setting periods had no substantial effects on the inherent strain-hardening characteristics of PVA-ECCs, the effects should not be ignored.

Author(s):  
Xiaodong Zhang ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Xiaoxiao Wang ◽  
Huiwen Wang

Polyvinyl alcohol-engineering cementitious composites (PVA-ECC) has been widely applied in bridge deck repairing or widening, the common practice for doing this is that a portion of a bridge is left open to traffic while the closed portion is constructed, which expose the early age PVA-ECC to the vehicle-induced vibrations. However, whether vehicle-induced vibrations affect the tensile performance of early age PVA-ECC remains unknow. The purpose of this study was to conduct laboratory test programs on how much vehicle-induced vibrations during early ages affected the tensile performance of PVA-ECC. A self-improved device was used to simulate the vehicle-induced vibrations, and after vibrating with the designed variables, both a uniaxial tensile test and a grey correlation analysis were performed. The results indicated that: the effects of vehicle-induced vibrations on the tensile performance of early age PVA-ECC were significant, and they generally tended to be negative in this investigation. In particular, for all of the vibrated PVA-ECC specimens, the most negative age when vibrated occurred during the period between the initial set and the final set. We concluded that although vehicle-induced vibrations during the setting periods had no substantial effects on the inherent strain-hardening characteristics of PVA-ECC, the effects should not be ignored.


Author(s):  
Xiaodong Zhang ◽  
Shuguang Liu ◽  
Changwang Yan ◽  
Xiaoxiao Wang ◽  
Huiwen Wang

The purpose of this study was to conduct laboratory test programs on how much vehicle-induced vibrations during early ages affected the tensile performance of Polyvinyl alcohol-engineering cementitious composites (PVA-ECC). A self-improved device was used to simulate the vehicle-induced vibrations, and after vibrating with the designed variables, both a uniaxial tensile test and a grey correlation analysis were performed. The results indicated that: the effects of vehicle-induced vibrations on the tensile performance of early age PVA-ECC were significant, and they generally tended to be negative in this investigation. In particular, for all of the vibrated PVA-ECC specimens, the most negative age when vibrated occurred during the period between the initial set and the final set. In this period, the effects of the vibration duration on the tensile performance of the PVA-ECC tended to be negative overall, but the impact trend and the degree varied for the corresponding lengths of duration and levels of frequency. The cracking strength was the most sensitive to the variables in this investigation, and then it followed the ultimate tensile strength and strain. The grey correlation analysis was applicable in analyzing the effects of vehicle-induced vibrations on the tensile performance of early age PVA-ECC.


Sign in / Sign up

Export Citation Format

Share Document