scholarly journals Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2683 ◽  
Author(s):  
Kamil Pajor ◽  
Lukasz Pajchel ◽  
Joanna Kolmas

Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2935 ◽  
Author(s):  
Marcin Kozakiewicz ◽  
Tomasz Wach

This article presents a comparison of bone replacement materials in terms of their ability to produce living bone image at the place of their implantation. Five bone replacement materials are compared (Osteovit—porous collagen, Cerasorb Foam—collagen scaffolding of synthetic β tricalcium phosphate, Osbone—synthetic hydroxyapatite, Endobone—deproteinized bovine-derived cancellous bone hydroxyapatite, and Cerasorb—synthetic β tricalcium phosphate). Intraoral radiographs are taken immediately after implantation and 12 months later. The texture analysis was performed to assess (texture index, TI) the level of structure chaos (entropy) in relation to the presence of longitudinal elements visible in radiographs (run length emphasis moment). The reference ratio of the chaotic trabecular pattern (Entropy) to the number of longitudinal structures, i.e., trabeculae (LngREmph), is 176:100 (i.e., 1.76 ± 0.28). Radiological homogeneity immediately after the implantation procedure is a result of the similar shape of its particles (Osbone, Endobone and Cerasorb) or radiolucency (Osteovit, Cerasorb Foam). The particles visible in radiographs were similar in the LngREmph parameters applied to the reference bone, but not in the co-occurrence matrix features. The TI for Osteovit during a 12-month follow-up period changed from 1.55 ± 0.26 to 1.48 ± 0.26 (p > 0.05), for Cerasorb Foam from 1.82 ± 0.27 to 1.63 ± 0.24 (p < 0.05), for Osbone from 1.97 ± 0.31 to 1.74 ± 0.30 (p < 0.01), and for Endobone from 1.86 ± 0.25 to 1.84 ± 0.25 (p > 0.05), The observed structure in the radiological image of bone substitute materials containing calcium phosphates obtains the characteristics of a living bone image after twelve months.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4865
Author(s):  
Lijie Chen ◽  
Suma Al-Bayatee ◽  
Zohaib Khurshid ◽  
Amin Shavandi ◽  
Paul Brunton ◽  
...  

Calcium phosphate compounds form the inorganic phases of our mineralised tissues such as bone and teeth, playing an important role in hard tissue engineering and regenerative medicine. In dentistry and oral care products, hydroxyapatite (HA) is a stable and biocompatible calcium phosphate with low solubility being used for various applications such as tooth remineralisation, reduction of tooth sensitivity, oral biofilm control, and tooth whitening. Clinical data on these products is limited with varied results; additionally, the effectiveness of these apatite compounds versus fluoride, which has conventionally been used in toothpaste, has not been established. Therefore, this review critically evaluates current research on HA oral care, and discusses the role and mechanism of HA in remineralisation of both enamel and dentine and for suppressing dentine sensitivity. Furthermore, we position HA’s role in biofilm management and highlight the role of HA in dental applications by summarising the recent achievement and providing an overview of commercialised HA dental products. The review also indicates the existing limitations and provides direction for future research and commercialisation of apatite-based oral care products.


2007 ◽  
Vol 330-332 ◽  
pp. 1129-1132 ◽  
Author(s):  
S. Teixeira ◽  
H.M. Fernandes ◽  
J. de Boer ◽  
M.P. Ferraz ◽  
F.J. Monteiro

Calcium phosphate ceramics are widely used as bone substitutes since they are biocompatible and bioactive. Given that their chemical composition is close to natural bone, calcium phosphate ceramics are promising bone substitute materials in orthopaedics, maxillofacial surgery and dentistry. Hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most commonly used calcium phosphates, because their calcium/phosphorus (Ca/P) ratios are close to that of natural bone and they are relatively stable in physiological environment. Furthermore, other critical parameters must be accomplished when designing a biomaterial for bone regeneration, namely: pore size, shape and interconnectivity [1]. Porosity is one of the most important factors since it influences the adhesion, migration nutrient supply and ultimately, proliferation of mesenchymal stem cells. In this study, HA scaffolds with controlled porosity were obtained and their capacity to support human and rat mesenchymal stem cells attachment and proliferation was evaluated.


2019 ◽  
Vol 20 (2) ◽  
pp. 305 ◽  
Author(s):  
Maria Karadjian ◽  
Christopher Essers ◽  
Stefanos Tsitlakidis ◽  
Bruno Reible ◽  
Arash Moghaddam ◽  
...  

Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1961
Author(s):  
Dirk Wähnert ◽  
Julian Koettnitz ◽  
Madlen Merten ◽  
Daniel Kronenberg ◽  
Richard Stange ◽  
...  

Bone substitute materials are becoming increasingly important in oral and maxillofacial surgery. Reconstruction of critical size bone defects is still challenging for surgeons. Here, we compared the clinically applied organic bone substitute materials NanoBone® (nanocrystalline hydroxyapatite and nanostructured silica gel; n = 5) and Actifuse (calcium phosphate with silicate substitution; n = 5) with natural collagen-based Spongostan™ (hardened pork gelatin containing formalin and lauryl alcohol; n = 5) in bilateral rat critical-size defects (5 mm diameter). On topological level, NanoBone is known to harbour nanopores of about 20 nm diameter, while Actifuse comprises micropores of 200–500 µm. Spongostan™, which is clinically applied as a haemostatic agent, combines in its wet form both nano- and microporous topological features by comprising 60.66 ± 24.48 μm micropores accompanied by nanopores of 32.97 ± 1.41 nm diameter. Micro-computed tomography (µCT) used for evaluation 30 days after surgery revealed a significant increase in bone volume by all three bone substitute materials in comparison to the untreated controls. Clearly visual was the closure of trepanation in all treated groups, but granular appearance of NanoBone® and Actifuse with less closure at the margins of the burr holes. In contrast, transplantion of Spongostan™ lead to complete filling of the burr hole with the highest bone volume of 7.98 ccm and the highest bone mineral density compared to all other groups. In summary, transplantation of Spongostan™ resulted in increased regeneration of a rat calvarial critical size defect compared to NanoBone and Actifuse, suggesting the distinct nano- and microtopography of wet Spongostan™ to account for this superior regenerative capacity. Since Spongostan™ is a clinically approved product used primarily for haemostasis, it may represent an interesting alternative in the reconstruction of defects in the maxillary region.


2014 ◽  
Vol 631 ◽  
pp. 426-429 ◽  
Author(s):  
Marco A. Lopez-Heredia ◽  
Dirk Barnewitz ◽  
Antje Genzel ◽  
Michael Stiller ◽  
Fabian Peters ◽  
...  

Calcium phosphates (CaPs) are synthetic bone grafting materials. CaPs are an alternative to overcome the drawbacks present with autologous bone grafting and/or xenograft materials. Among the CaPs, tricalcium phosphate (TCP) stands out as a good candidate due to its physicochemical properties. The clinical performance of β-TCP has already been proven and established. Nevertheless, the format in which TCP is delivered is also important in terms of clinical handling. This work assessed the in vivo performance of TCP-based bone grafting materials with different formats. Materials studied were a TCP paste (TCP-P), a TCP foam (TCP-F) and TCP granules (TCP-G). A sheep scapula model was used to evaluate the osteogenic performance of these bone grafting materials. All materials performed well in terms of bone regenerative capacity and material resorption. However, TCP-P and TCP-F displayed a more pronounced initial material resorption and also exhibited better handling properties compared to TCP-G. TCP-based materials with improved handling properties, such as TCP-P and TCP-F, which at the same time possess the advantageous properties of β-TCP are suitable bone substitute materials for grafting and reconstruction of bone defects in numerous clinical applications.


2012 ◽  
Vol 8 (3) ◽  
pp. 197-210
Author(s):  
Susan M. Bridges ◽  
Cynthia K.Y. Yiu ◽  
Colman P. McGrath

In clinical dental consultations in multilingual contexts, medical interpreting is often performed by the supporting staff as part of routine triadic formulations. As academic dentistry becomes increasingly internationalised, issues of language and culture add to the interactional complexity of clinical communication and education. A multivariate approach was adopted to investigate one case of multilingualism in dentistry in Asia. Collection of both survey (n=86) and interactional data provided empirical evidence regarding language use and language demands across integrated Polyclinics. Descriptive statistics of Dental Surgery Assistant (DSA) perception data and conversation analysis (CA) of mediated interpretation indicate that, as members of the oral healthcare team, DSAs in Hong Kong are an essential resource in their role of intercultural mediators between patients and clinicians, both staff and students. Discussion of sociolinguistic notions of place-as-location and place-as-meaning supports a wider conceptualisation of the role of support staff as interpreters in clinical settings. Implications are drawn for policy, curriculum and staff development.


2017 ◽  
Vol 1 (4) ◽  
Author(s):  
Andrius Geguzis ◽  
Inesa Astramskaite ◽  
Dovile Gabseviciute

2017 ◽  
Vol 34 ◽  
pp. 291-306 ◽  
Author(s):  
G Russmueller ◽  
◽  
L Winkler ◽  
R Lieber ◽  
R Seemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document