scholarly journals A Comparative Study of Helical and Cross-Wedge Rolling Processes for Producing Ball Studs

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2887
Author(s):  
Tomasz Bulzak ◽  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Krzysztof Majerski

This paper presents two rolling technologies: cross-wedge rolling (CWR) and helical-wedge rolling (HWR). The two rolling processes were compared using the example of rolling a ball stud forging. The technologies were modeled in the finite element model (FEM) environment. Calculations were performed to obtain distributions of strain and the Cockcroft–Latham damage criterion. The investigated processes were also performed under real-life conditions. The results of the experiments were used to compare the force and energy parameters of the rolling technologies. Tests were also carried out to investigate the microstructure of the studs and a grain size after rolling. The state of the macrostructure, i.e., the grain flow lines, was also compared. The experiments showed that HWR was a more energy-efficient process.

2011 ◽  
Vol 101-102 ◽  
pp. 1002-1005 ◽  
Author(s):  
Jing Zhao ◽  
Li Qun Lu

The process of multi-wedge cross wedge rolling is an advanced precision technology for forming long shaft parts such as automobile semi-axes. Three-dimensional solid model and the finite element model of semi-axes on automobile and dies of its cross wedge rolling were established. The process of cross wedge rolling was simulated according to the actual dimension of semi-axes on automobile utilizing the finite element method (FEM)software ANSYS/LS-DYNA. The required force parameters for designing semi-axes mill are determined. The appropriate roller width was determined according to the length and diameter of semi-axes on automobile. The results have provided the basis for the design of specific structure of automobile semi-axes cross wedge rolling mill.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

Conical picks are the key cutting components used on roadheaders, and they are replaced frequently because of the bad working conditions. Picks did not meet the fatigue life when they were damaged by abrasion, so the pick fatigue life and strength are excessive. In the paper, in order to reduce the abrasion and save the materials, structure optimization was carried out. For static analysis and fatigue life prediction, the simulation program was proposed based on mathematical models to obtain the cutting resistance. Furthermore, the finite element models for static analysis and fatigue life analysis were proposed. The results indicated that fatigue life damage and strength failure of the cutting pick would never happen. Subsequently, the initial optimization model and the finite element model of picks were developed. According to the optimized results, a new type of pick was developed based on the working and installing conditions of the traditional pick. Finally, the previous analysis methods used for traditional methods were carried out again for the new type picks. The results show that new type of pick can satisfy the strength and fatigue life requirements.


2014 ◽  
Vol 971-973 ◽  
pp. 380-389
Author(s):  
Jian Ning Wang ◽  
Gang Wu ◽  
Wei Yi Xie ◽  
Xin De Han ◽  
Ming Chao Gang

Abstract: The packer rubber stress in the bottom hole is more complex. Based on constitutive model of the packer rubber material, this paper determines such parameters as model constants, Poisson's ratio of rubber materials and elastic modulus by using experimental method, to build up the finite element model of center tube-rubber cylinder-casing for the purpose of stress analysis. Finally, the distribution regularity of rubber cylinder-casing contact stress and packer setting travel distance with varying loads is concluded. The results can provide the theoretical basis for further analysis of packer rubber sealing performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


1999 ◽  
Author(s):  
David S. Hardage ◽  
Gloria J. Wiens

Abstract This paper presents the results of a mini-modal survey on the Hexel Tornado 2000, a parallel kinematic machine tool located at Sandia National Laboratories, and discusses the finite element model that is used to simulate the structural dynamics of this machine. Preliminary data suggests a dependency of resonant frequency and stiffness characteristics on machine configuration.


Sign in / Sign up

Export Citation Format

Share Document