scholarly journals Preparation and Characterization of Fly Ash Coated with Zinc Oxide Nanocomposites

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3550 ◽  
Author(s):  
Wang ◽  
Wang ◽  
Bai ◽  
Yang ◽  
Wang

Calcined fly ash (CFA) was first obtained by calcining fly ash (FA) at 815 °C for two hours. Then, composite powders of CFA coated with zinc oxide nanoparticles (ZnO/CFA, ZCFA) were prepared by heterogeneous nucleation method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning electronic microscopy (SEM), Whiteness, and Brunauer-Emmett-Teller specific surface area (BET). Effects of pH value, reaction temperature and time, coating amount, solid-to-liquid ratio, the coating agent concentrations, and dropping speed on the whiteness of ZCFA powders were studied. It was shown that after coated with ZnO particles, the whiteness of CFA was increased from 27.0 to 62.6%, and the specific surface area was increased from 5.80 to 14.61 m2/g. Needle ZnO with the average grain size of 46 nm was deposited on the surface of CFA. Si–O–Zn–OH bonds were formed.

2011 ◽  
Vol 130-134 ◽  
pp. 856-859
Author(s):  
Chun Sheng Ding ◽  
Yang Ping Fu ◽  
Qian Fen Zhu ◽  
Jing Fu

In this experiment quartz sand was chosen as a carrier to be coated by aluminous salt under alkaline condition, and then the specific surface area was tested, and the adsorption capability and Cd2+ removal influencing factors of modified sand were studied. The investigation results showed that the specific surface area of modified sand was 75.244m2/g which was 9.38 times of that of original sand; the removal efficiency of Cd2+ by aluminous salt modified sand reached 59% contrast to 39% of original sand with pH 7.00. It was also found that the removal efficiency of Cd2+ by the aluminous salt modified sand was reduced with the increase of initial concentration of Cd2+ solution, and was enhanced with the increase of pH value, the Cd2+ removal efficiency was almost 71% with pH 9.0.


2011 ◽  
Vol 415-417 ◽  
pp. 1265-1272
Author(s):  
Wen Biao Zhang ◽  
Wen Zhu Li ◽  
Bing Song Zheng

Miscanthus is a highly productive, rhizomatous, C4 perennial grass that should be considered as an excellent active carbon precursor. This paper compares the charcoal characterization and chemical composition between M. sinensis and M. floridulus. Species differed in water content, hot water extract, 1% NaOH extract, organic solvent extract, cellulose, lignin and ash. Carbonization temperatures have effects on charcoal yields of Miscanthus, which ranged from 23.5% to 48.0% for M. sinensis and 11.3% to 37.2% for M. floridulus. Water content, charcoal density, pH value, and specific surface area of charcoal characterization varied between two species of Miscanthus. The specific surface area increased with the increase of carbonization temperature. The highest specific surface area of M. sinensis and M. floridulus was 351.74 m2g−1and 352.74 m2g−1, respectively, when the carbonization temperature was 800°C.


2012 ◽  
Vol 512-515 ◽  
pp. 1980-1985
Author(s):  
Ya Jun Luo ◽  
Xue Li ◽  
Xiao Li Hu ◽  
Deng Liang He ◽  
Peng Lin

SiO2aerogel is prepared under normal conditions by taking tetraethyl orthosilicate (TEOS) as the silica source, N-hexane as the displacer, trimethylchlorosilane hexane as the modifier and hydrolysis environment provided by hydrochloric acid and ammonia water. The effect of pH value, time, temperature, initial concentration on the adsorption of nitrobenzene by aerogel has been studied. The results show that the best range of the pH value for adsorption is 10.72. When adsorption time is 100 min, adsorption equilibrium can be reached. The best temperature for adsorption is 40 °C. The adsorption capacity becomes larger with the concentration increasing of the nitrobenzene solution. When the concentration reaches 500 mg/L, the adsorption reaches 32.402 mg/g. The adsorption equation matches Langmuir model. Scanning Electron Microscopes (SEM), infrared absorption spectrum and specific surface area measurements have shown that the adsorption property of SiO2aerogel for the nitrobenzene is related to cellular structure of the aerogel and large specific surface area.


2011 ◽  
Vol 65 (3) ◽  
pp. 271-277
Author(s):  
Zoran Obrenovic ◽  
Radislav Filipovic ◽  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Transition (active) phases of alumina were synthesized starting from sodium aluminate solution prepared out of Bayer liquor. The neutralisation of sodium aluminate solution was performed by sulphuric acid. Powder X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and low-temperature nitrogen absorption studies were employed to trace the formation of the transition phases of alumina. The results show that the properties of the powders (phase composition, morphology and specific surface area) are strongly influenced by the initial pH value of the system, as well as by the duration of neutralisation step. It is possible to obtain powders with heterogeneous structure with dominant phase of bayerite, gibbsite or boehmit by tuning the pH and concentration of the starting sodium aluminate solution. The transition (active) phases of alumina (?- and ?-alumina) with high specific surface area (264-373 m2/g) are formed through the thermal dehydratation of aluminium hydroxide (bayerite and gibbsite) and aluminium oxyhydroxide (boehmite or pseudoboehmite) at the temperature of 500?C. Namely, bayerite and pseudoboehmite transforms to ?-phase of alumina upon heating, while gibbsite transforms to ?-phase, maintaining the parent morphology.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2424 ◽  
Author(s):  
Bao-guo Fan ◽  
Li Jia ◽  
Yan-lin Wang ◽  
Rui Zhao ◽  
Xue-song Mei ◽  
...  

In order to obtain the adsorption mechanism and failure characteristics of CO2 adsorption by potassium-based adsorbents with different supports, five types of supports (circulating fluidized bed boiler fly ash, pulverized coal boiler fly ash, activated carbon, molecular sieve, and alumina) and three kinds of adsorbents under the modified conditions of K2CO3 theoretical loading (10%, 30%, and 50%) were studied. The effect of the reaction temperature (50 °C, 60 °C, 70 °C, 80 °C, and 90 °C) and CO2 concentration (5%, 7.5%, 10%, 12.5%, and 15%) on the adsorption of CO2 by the adsorbent after loading and the effect of flue gas composition on the failure characteristics of adsorbents were obtained. At the same time, the microscopic characteristics of the adsorbents before and after loading and the reaction were studied by using a specific surface area and porosity analyzer as well as a scanning electron microscope and X-ray diffractometer. Combining its reaction and adsorption kinetics process, the mechanism of influence was explored. The results show that the optimal theoretical loading of the five adsorbents is 30% and the reaction temperature of 70 °C and the concentration of 12.5% CO2 are the best reaction conditions. The actual loading and CO2 adsorption performance of the K2CO3/AC adsorbent are the best while the K2CO3/Al2O3 adsorbent is the worst. During the carbonation reaction of the adsorbent, the cumulative pore volume plays a more important role in the adsorption process than the specific surface area. As the reaction temperature increases, the internal diffusion resistance increases remarkably. K2CO3/AC has the lowest activation energy and the carbonation reaction is the easiest to carry out. SO2 and HCl react with K2CO3 to produce new substances, which leads to the gradual failure of the adsorbents and K2CO3/AC has the best cycle failure performance.


2020 ◽  
Vol 10 (9) ◽  
pp. 2993
Author(s):  
Qingke Nie ◽  
Youdong Li ◽  
Guohui Wang ◽  
Bing Bai

The main purpose of this study was to characterize the mineral and chemical composition of typical red muds in China. Changes in the physicochemical and microstructural properties of red muds collected from the Shanxi and Shandong provinces were investigated after they were immersed in an alkaline NaOH or an acidic HCl solution for 7, 28, and 120 days. The results showed that red mud has a high cation exchange capacity and active physicochemical properties, which can be closely related to its extremely high alkalinity and complex microstructure. The neutralization of red mud with the HCl solution results in the release of Na+ from the red mud particles into the leachate and can effectively decrease the pH value of the filtrate. The neutralization process can result in a significant decrease in the liquid limit, plastic limit and plasticity index, whereas the opposite was observed for the different parameters after the addition of the NaOH solution. In this sense, acid neutralization can significantly improve the cementation property of the red mud. This result will increase the water permeability of the acid-treated soil layer and improve the growth ability of plants. The specific surface area of red mud immersed in the NaOH solution decreased, whereas the specific surface area of red mud immersed in the HCl solution increased. This study contributes to our understanding of red mud properties after the red mud has been subjected to acidic and alkaline treatments, and the results can provide insights into the safe disposal of red mud.


2011 ◽  
Vol 356-360 ◽  
pp. 1900-1908 ◽  
Author(s):  
Juliana De Carvalho Izidoro ◽  
Denise Alves Fungaro ◽  
Shao Bin Wang

A Brazilian fly ash sample (CM1) was used to synthesize zeolites by hydrothermal treatment. Products and raw materials were characterized in terms of real density (Helium Pycnometry), specific surface area (BET method), morphological analysis (SEM), chemical composition (XRF) and mineralogical composition (XRD). The zeolites (ZM1) from fly ash were used for metal ion removal from water. Results indicated that hydroxy-sodalite zeolite could be synthesized from fly ash sample. The zeolite presented higher specific surface area and lower SiO2/Al2O3ratio than the ash precursor. The adsorption showed that cadmium is more preferentially adsorbed on ZM1 than zinc. The adsorption equilibrium time for both Zn2+and Cd2+was 20 hours in a batch process. The adsorption isotherms were better fitted by the Langmuir model and the highest percentages of removal using ZM1 were obtained at pH 6 and 5 and doses of 15 and 18 g L-1for Zn2+and Cd2+, respectively. Thermodynamic studies indicated that adsorption of Zn2+and Cd2+by ZM1 was a spontaneous, endothermic process and presented an increase of disorder at the interface solid/solution.


Sign in / Sign up

Export Citation Format

Share Document