scholarly journals The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat—Protein Template Constructs

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 327
Author(s):  
Monika Šupová

This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate—protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.

2010 ◽  
Vol 6 (8) ◽  
pp. 2863-2873 ◽  
Author(s):  
M.P. Ginebra ◽  
M. Espanol ◽  
E.B. Montufar ◽  
R.A. Perez ◽  
G. Mestres

2008 ◽  
Vol 1139 ◽  
Author(s):  
Jeffrey T. Borenstein

AbstractThe emergence of BioMEMS fabrication technologies such as soft lithography, micromolding and assembly of 3D structures, and biodegradable microfluidics, are already making significant contributions to the field of regenerative medicine. Over the past decade, BioMEMS have evolved from early silicon laboratory devices to polymer-based structures and even biodegradable constructs suitable for a range of ex vivo and in vivo applications. These systems are still in the early stages of development, but the long-term potential of the technology promises to enable breakthroughs in health care challenges ranging from the systemic toxicity of drugs to the organ shortage. Ex vivo systems for organ assist applications are emerging for the liver, kidney and lung, and the precision and scalability of BioMEMS fabrication techniques offer the promise of dramatic improvements in device performance and patient outcomes.Ultimately, the greatest benefit from BioMEMS technologies will be realized in applications for implantable devices and systems. Principal advantages include the extreme levels of achievable miniaturization, integration of multiple functions such as delivery, sensing and closed loop control, and the ability of precision microscale and nanoscale features to reproduce the cellular microenvironment to sustain long-term functionality of engineered tissues. Drug delivery systems based on BioMEMS technologies are enabling local, programmable control over drug concentrations and pharmacokinetics for a broad spectrum of conditions and target organs. BioMEMS fabrication methods are also being applied to the development of engineered tissues for applications such as wound healing, microvascular networks and bioartificial organs. Here we review recent progress in BioMEMS-based drug delivery systems, engineered tissue constructs and organ assist devices for a range of ex vivo and in vivo applications in regenerative medicine.


2012 ◽  
Vol 32 (11) ◽  
pp. 2679-2690 ◽  
Author(s):  
Hiva Baradari ◽  
Chantal Damia ◽  
Maggy Dutreih-Colas ◽  
Etienne Laborde ◽  
Nathalie Pécout ◽  
...  

2004 ◽  
Vol 277 (1-2) ◽  
pp. 91-97 ◽  
Author(s):  
T Morçöl ◽  
P Nagappan ◽  
L Nerenbaum ◽  
A Mitchell ◽  
S.J.D Bell

2005 ◽  
Vol 896 ◽  
Author(s):  
Reed Ayers ◽  
Doug Burkes ◽  
Guglielmo Gottoli ◽  
H.C. Yi ◽  
Jaque Guigné ◽  
...  

AbstractThe term combustion synthesis, or self-propagating high temperature synthesis (SHS), refers to an exothermic chemical reaction process that utilizes the heat generated by the exothermic reaction to ignite and sustain a propagating combustion wave through the reactants to produce the desired product(s). The products of combustion synthesis normally are extremely porous: typically 50 percent of theoretical densityAdvantages of combustion synthesis over traditional processing routes, e.g., sintering, in the production of advanced materials such as ceramics, intermetallic compounds and composites include process economics, simplicity of operation, and low energy requirements. However, the high exothermicity and rapid combustion propagation rates necessitate a high degree of control of these reactions.One research area being conducted in the Institute for Space Resources (ISR) at the Colorado School of Mines (CSM) is the application of combustion synthesis (SHS) to synthesize advanced, engineered porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems. Such material systems require a complex combination of properties that can be truly classified as multi-functional materials. The range of properties includes: an overall porosity of 40-60% with a pore size of 200-500 μm; mechanical properties (compression strength and Young’s modulus) that match those of natural bone to avoid ‘stress shielding’; and a surface chemistry that is capable of facilitating bone growth and mineralization.The paper will discuss the synthesis of porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems.


2012 ◽  
Vol 529-530 ◽  
pp. 441-446
Author(s):  
Thomas Miramond ◽  
Pascal Borget ◽  
Caroline Colombeix ◽  
Serge Baroth ◽  
G. Daculsi

The main goal of this study was to succeed in the relevant association of well-known osteoconductive biphasic calcium phosphate (BCP) made of Hydroxyapatite (20% HA) and β-Tricalcium Phosphate (80% β-TCP) crystallographic phases and resorbable poly (L-lactide-co-D,L-lactide)(PLDLLA) 3D matrices synthesized by electrospinning. Two types of mineral particles were obtained, BCP new hollow granules, and classical BCP particles. It appeared that hollow shells/PLDLLA composite 3D matrices allowed higher cell adhesionin vitro,thanks to internal concavities and are promising scaffolds in terms of cell carrying.


2013 ◽  
Vol 5 (2) ◽  
pp. 168-186 ◽  
Author(s):  
Elizabeth R. Lorden ◽  
Howard M. Levinson ◽  
Kam W. Leong

2015 ◽  
Vol 490 (1-2) ◽  
pp. 200-208 ◽  
Author(s):  
Ana C. Matos ◽  
Catarina F. Marques ◽  
Rosana V. Pinto ◽  
Isabel A.C. Ribeiro ◽  
Lídia M. Gonçalves ◽  
...  

2011 ◽  
Vol 11 (6) ◽  
pp. 560-567 ◽  
Author(s):  
Kamran Majid ◽  
Michael D. Tseng ◽  
Kevin C. Baker ◽  
Alma Reyes-Trocchia ◽  
Harry N. Herkowitz

Sign in / Sign up

Export Citation Format

Share Document