scholarly journals Electromechanical Behaviors of Graphene Reinforced Polymer Composites: A Review

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 528 ◽  
Author(s):  
Chuang Feng ◽  
Dong Zhu ◽  
Yu Wang ◽  
Sujing Jin

Graphene (including its derivatives)-reinforced polymer composites (GRPCs) have been drawing tremendous attention from academic and industrial communities for developing smart materials and structures. Such interest stems from the excellent combination of the mechanical and electrical properties of these composites while keeping the beneficial intrinsic attributes of the polymers, including flexibility, easy processability, low cost and good biological and chemical compatibility. The electromechanical performances of these GRPCs are of great importance for the design and optimization of engineering structures and components. Extensive work has been devoted to this topic. This paper reviews the recent studies on the electromechanical behaviors of GRPCs. First the methods and techniques to manufacture graphene and GRPCs are introduced, in which the pros and cons of each method are discussed. Then the experimental examination and theoretical modeling on the electromechanical behaviors of the nanocomposites are presented and discussed.

2021 ◽  
pp. 152808372110575
Author(s):  
Adnan Amjad ◽  
Aslina Anjang Ab Rahman ◽  
Habib Awais ◽  
Mohd Shukur Zainol Abidin ◽  
Junaid Khan

Composite holds great promise for future materials considering its advantages such as excellent strength, stiffness, lightweight, and cost-effectiveness. Due to rising environmental concerns, the research speed gradually changes from synthetic polymer composites to natural fibre reinforced polymer composites (NFRPCs). Natural fibres are believed a valuable and robust replacement to synthetic silicates and carbon-based fibres, along with biodegradability, recyclability, low cost, and eco-friendliness. But the incompatibility between natural fibre and polymer matrices and higher moisture absorption percentage of natural fibre limitise their applications. To overcome these flaws, surface treatment of natural fibre and nanofiller addition have become some of the most important aspects to improve the performance of NFRPCs. This review article provides the most recent development on the effect of different nanofiller addition and surface treatment on the mechanical, thermal, and wetting behaviour of NFRPCs. It concludes that the fibre surface treatment and nanofillers in natural fibre polymer composites positively affect mechanical, thermal and water absorption properties. A systematic understanding in this field covers advanced research basics to stimulate investigation for fabricating NFRPCs with excellent performance.


2020 ◽  
Vol 1002 ◽  
pp. 75-83
Author(s):  
Wafaa Mahdi Salih

Using PMMA Polymer reinforced by Natural Fiber (N.F.) materials have established much consideration because of several advantages for example low cost, non-abrasive, lightweight, non-toxic and the properties of bio-degradable. many kinds of research have been done in the recent usage of the natural reinforcing material to the preparation of different types of composites. Chemically treated jute fiber can enhance the surface of the fiber, decrease the absorption technique, and improve the roughness surface.in this research, pre-chemical treated in different lengths of jute- fibers in PMMA polymer-composites has been considered. Also, the effect of chemical treatment on mechanical properties of jute, jute reinforcing composite has been conferred. The results showed that the tensile strength T.S. of the treated in benzoylate solutions (4 mm) length fiber had good indicate to better interlocking between composite contents.Flexural-Strength F.S. of the-alkaline. solution treated (12 mm) length of fiber was obtained-better-results by increasing (16.5 %) compared with (2 mm) fiber-length. The fracture of the samples has discussed the relationship between composite adhesion. Impact Strength I.S. of the alkaline-treated (8,12 mm) fiber- a length that is due to to.better mechanical - interlocking between composite materials. The 2 mm fiber – length was not suitable-PMMA/ Jute composite in these tested for treated and untreated chemicals


Author(s):  
Hisakura Yuuki ◽  
Kitahara Kenichi ◽  
Sugihara Makoto ◽  
Imajo Akihiko ◽  
Hamada Hiroyuki

GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are superior to the GF composites at a lower CF content in tensile and bending properties. However, CF is more expensive than GF. In this study, acrylonitrile butadiene styrene (ABS) was reinforced with single and hybrid reinforcing of glass fibers (GF) and carbon fibers (CF). The composites consisting of GF/ABS, CF/ABS and GF/CF/ABS were fabricated by direct fiber feeding injection molding (DFFIM). The reinforcing fiber was directly fed at the vent hole of the barrel in the DFFIM process. The effects of fiber Tex, fiber numbers and processing parameters on properties of the composites were investigated. Tensile, bending and Izod impact testing was conducted to compare mechanical properties of GF/ABS composites, CF/ABS composites and hybrid GF/CF/ABS composites. Morphology of the composites was observed by scanning electron microscopy. In addition, the cost advantage of each composite was compared with their mechanical properties. From the results, the addition of carbon fiber improved tensile, bending and impact properties of the hybrid composites. SEM photographs indicated that carbon fiber tended to agglomerate during the DFFIM process. The hybrid GF/CF/ABS composites presented an equivalent improvement in tensile and bending properties as compared to the CF/ABS composites. It can be noted that the low CF content was suitable for enhanced mechanical performances of the hybrid GF/CF/ABS composites. Therefore, the hybrid composites can be manufactured at a low cost as compared to the similar mechanical properties of the CF/ABS composites.


2020 ◽  
Vol 9 (2) ◽  
pp. 1103-1110

There has been a growing interest to produce composite polymeric materialsusing natural fibers as reinforcement. Scientists prefer natural fiber as a reinforced material to make polymer composites due to their bio-degradability characteristics,strong mechanical properties, high specific strength, low cost, non-abrasiveand ecofriendly nature . This review presents the reported work on natural plant based fiber reinforced polymer composites with special reference to the type of natural fibers and host polymers. Various fiber treatments, which are carried out to improve the fiber– hostadhesion, improved mechanical properties that greatly increase the application of these polymer composites specially in automobile industries and bioapplications are highlighted.


Author(s):  
Sachin Tejyan ◽  
Divyesh Sharma ◽  
Brijesh Gangil ◽  
Amar Patnaik ◽  
Tej Singh

Sign in / Sign up

Export Citation Format

Share Document