scholarly journals Feasibility Study on the Use of Recycled Polymers for Malathion Adsorption: Isotherms and Kinetic Modeling

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1824
Author(s):  
Jhonatan J. Hermosillo-Nevárez ◽  
Victoria Bustos-Terrones ◽  
Yaneth A. Bustos-Terrones ◽  
Perla Marysol Uriarte-Aceves ◽  
Jesus Gabriel Rangel-Peraza

In this study, the use of Polyvinylchloride (PVC) and High Density Polystyrene (HDPS) was demonstrated as an alternative for the adsorption of Malathion. Adsorption kinetics and isotherms were used to compare three different adsorbent materials: PVC, HDPS, and activated carbon. The adsorption capacity of PVC was three times higher than activated carbon, and a theoretical value of 96.15 mg of Malathion could be adsorbed when using only 1 g of PVC. A pseudo first-order rate constant of 1.98 (1/h) was achieved according to Lagergren kinetic model. The adsorption rate and capacity values obtained in the present study are very promising since with very little adsorbent material it is possible to obtain high removal efficiencies. Phosphorous and sulfur elements were identified through Energy Dispersive X-ray (EDX) analysis and evidenced the malathion adsorption on PVC. The characteristic spectrum of malathion was identified by the Fourier Transform Infrared (FTIR) Spectroscopy analysis. The Thermogravimetric and Differential Thermal Analysis (TG/DTA) suggested that the adsorption of malathion on the surface of the polymers was mainly determined by hydrogen bonds.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


1976 ◽  
Vol 153 (2) ◽  
pp. 495-497 ◽  
Author(s):  
D C Wilton

The enzyme deoxyribose 5-phosphate aldolase was irreversibly inactivated by the substrate analogue acrolein with a pseudo-first-order rate constant of 0.324 min-1 and a Ki (apparent) of 2.7 × 10(-4) m. No inactivation was observed after prolonged incubation with the epoxide analogues glycidol phosphate and glycidaldehyde. It is suggested that the acrolein is first activated by forming a Schiff base with the enzyme active-site lysine residue and it is the activated inhibitor that reacts with a suitable-active-site nucleophile.


1988 ◽  
Vol 34 (10) ◽  
pp. 1971-1975 ◽  
Author(s):  
D R Hoak ◽  
S K Banerjee ◽  
G Kaldor

Abstract Here, we used a fully automated, computer-directed centrifugal analyzer (which permitted simultaneous turbidimetry and calculation of results) and purified thrombin, fibrinogen, and various inhibitors to study clot formation. The Km and Vm for these reactions were useful in detecting and partly characterizing anticoagulants. We also explored the generation and inactivation of thrombin, using the two-stage prothrombin time and antithrombin activity tests. The amount of thrombin instantaneously generated and inactivated was monitored under artificially created pathological conditions. The pseudo-first-order rate constant for thrombin generation and inactivation and the instantaneous concentration of enzymatically active and inactive thrombin were used in the characterization of these conditions. We believe this approach is suitable for routine clinical use.


1985 ◽  
Vol 63 (3) ◽  
pp. 663-666 ◽  
Author(s):  
Raj Narain Mehrotra

The kinetics of the oxidation of phenylphosphinic acid by quinquevalent vanadium ion have been investigated in aqueous perchlorate media under pseudo-first order conditions (phenylphosphinic acid in excess). The reaction has a first order dependence in [V(V)] and [phenylphosphinic acid] and the observed pseudo-first order rate constant kobs is given by kobs = a + b[H+].The acid-independent path is considered to be due to the reaction between VO2+ (aq.) and C6H5P:(OH)2, the active form of phenylphosphinic acid, while the reaction between V(OH)32+ (aq.) and C6H5P(O)(OH)H, the inactive form of phenylphosphinic acid, is considered to explain the acid-dependent path. Phenylphosphinic acid in aqueous acidic solution is known to exist as an equilibrium mixture of the active and inactive forms. The composite activation and thermodynamic parameters associated with the constants a and b are reported.


1993 ◽  
Vol 293 (2) ◽  
pp. 537-544 ◽  
Author(s):  
H J Lee ◽  
S H Chiou ◽  
G G Chang

The argininosuccinate lyase activity of duck delta-crystallin was inactivated by diethyl pyrocarbonate at 0 degrees C and pH 7.5. The inactivation followed pseudo-first-order kinetics after appropriate correction for the decomposition of the reagent during the modification period. The plot of the observed pseudo-first-order rate constant versus diethyl pyrocarbonate concentration in the range of 0.17-1.7 mM was linear and went through the origin with a second-order rate constant of 1.45 +/- 0.1 M-1.s-1. The double-logarithmic plot was also linear, with slope of 1.13, which suggested a 1:1 stoichiometry for the reaction between diethyl pyrocarbonate and delta-crystallin. L-Arginine, L-norvaline or L-citrulline protected the argininosuccinate lyase activity of delta-crystallin from diethyl pyrocarbonate inactivation. The dissociation constants for the delta-crystallin-L-arginine and delta-crystallin-L-citrulline binary complexes, determined by the protection experiments, were 4.2 +/- 0.2 and 0.12 +/- 0.04 mM respectively. Fumarate alone had no protective effect. However, fumarate plus L-arginine gave synergistic protection with a ligand binding interacting factor of 0.12 +/- 0.02. The double-protection data conformed to a random Uni Bi kinetic mechanism. Fluorescence-quenching studies indicated that the modified delta-crystallin had minimum, if any, conformational changes as compared with the native delta-crystallin. Inactivation of the enzyme activity was accompanied by an increasing absorbance at 240 nm of the protein. The absorption near 280 nm did not change. Treatment of the modified protein with hydroxylamine regenerated the enzyme activity to the original level. These results strongly indicated the modification of an essential histidine residue. Calculation from the 240 nm absorption changes indicated that only one histidine residue per subunit was modified by the reagent. This super-active histidine residue has a pKa value of approximately 6.8 and acts as a general acid-base catalyst in the enzyme reaction mechanism. Our experimental data are compatible with an E1cB mechanism [Raushel (1984) Arch. Biochem. Biophys. 232, 520-525] for the argininosuccinate lyase with the essential histidine residue close to the arginine-binding domain of delta-crystallin. L-Citrulline, after binding to this domain, might form an extra hydrogen bond with the essential histidine residue.


2011 ◽  
Vol 255-260 ◽  
pp. 2904-2908
Author(s):  
Li Jie Huang ◽  
Ting Xu ◽  
Shuang Fei Wang

Experiments were conducted to investigate the decolorization of methyl orange simulated wastewater in order to assess the effectiveness and feasibility of ultrasound(US) enhanced high-purity chlorine dioxide(ClO2) oxidation process. The results showed that in ClO2/US system the decolorization rate of methyl orange was up to 96%, which was increased by 8% as compared to ClO2treatment alone. The decolorization of methyl orange with/without ultrasonic irradiation follows apparent pseudo-first-order reaction kinetics. The apparent pseudo-first-order rate constant kappwas 0.19min-1in the ClO2/US system, which was a little higher than 0.13min-1of rate constant achieved in ClO2treatment alone. It shows that ClO2/US system can be an effective technology for the decolorization of azo dyes in wastewater.


Sign in / Sign up

Export Citation Format

Share Document