argininosuccinate lyase
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sanika Khare ◽  
Laura C. Kim ◽  
Graham Lobel ◽  
Paschalis-Thomas Doulias ◽  
Harry Ischiropoulos ◽  
...  

Abstract Background Kidney cancer is a common adult malignancy in the USA. Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, is characterized by widespread metabolic changes. Urea metabolism is one such altered pathway in ccRCC. The aim of this study was to elucidate the contributions of urea cycle enzymes, argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL) towards ccRCC progression. Methods We employed a combination of computational, genetic, and metabolomic tools along with in vivo animal models to establish a tumor-suppressive role for ASS1 and ASL in ccRCC. Results We show that the mRNA and protein expression of urea cycle enzymes ASS1 and ASL are reduced in ccRCC tumors when compared to the normal kidney. Furthermore, the loss of ASL in HK-2 cells (immortalized renal epithelial cells) promotes growth in 2D and 3D growth assays, while combined re-expression of ASS1 and ASL in ccRCC cell lines suppresses growth in 2D, 3D, and in vivo xenograft models. We establish that this suppression is dependent on their enzymatic activity. Finally, we demonstrate that conservation of cellular aspartate, regulation of nitric oxide synthesis, and pyrimidine production play pivotal roles in ASS1+ASL-mediated growth suppression in ccRCC. Conclusions ccRCC tumors downregulate the components of the urea cycle including the enzymes argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). These cytosolic enzymes lie at a critical metabolic hub in the cell and are involved in aspartate catabolism and arginine and nitric oxide biosynthesis. Loss of ASS1 and ASL helps cells redirect aspartate towards pyrimidine synthesis and support enhanced proliferation. Additionally, reduced levels of ASS1 and ASL might help regulate nitric oxide (NO) generation and mitigate its cytotoxic effects. Overall, our work adds to the understanding of urea cycle enzymes in a context-independent of ureagenesis, their role in ccRCC progression, and uncovers novel potential metabolic vulnerabilities in ccRCC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sigurdur Trausti Karvelsson ◽  
Qiong Wang ◽  
Bylgja Hilmarsdottir ◽  
Arnar Sigurdsson ◽  
Siver Andreas Moestue ◽  
...  

AbstractEpithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


2021 ◽  
Vol 140 (10) ◽  
pp. 1471-1485
Author(s):  
Shaul Lerner ◽  
Raya Eilam ◽  
Lital Adler ◽  
Julien Baruteau ◽  
Topaz Kreiser ◽  
...  

AbstractArgininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 381
Author(s):  
Yile Yu ◽  
Yuxin Zhu ◽  
Jing Yang ◽  
Wentao Zhu ◽  
Zhiqiang Zhou ◽  
...  

Dufulin is a highly effective antiviral pesticide used in plants. In this study, a seven-day experiment was conducted to evaluate the effects of Dufulin at five different concentrations (1 × 10−4, 1 × 10−3, 1 × 10−2, 0.1, and 1 mg/L) on Tubifex. LC-MS-based metabolome analysis detected a total of 5356 features in positive and 9110 features in negative, of which 41 showed significant changes and were identified as differential metabolites. Four metabolic pathways were selected for further study. Detailed analysis revealed that Dufulin exposure affected the urea cycle of Tubifex, probably via argininosuccinate lyase (ASL) inhibition. It also affected the fatty acid metabolism, leading to changes in the concentration of free fatty acids in Tubifex. Furthermore, the changes in metabolites after exposure to Dufulin at 1 × 10−2 mg/L were different from those at the other concentrations.


2021 ◽  
Vol 14 (3) ◽  
pp. e241032
Author(s):  
Krystyna Ediger ◽  
Anne Hicks ◽  
Komudi Siriwardena ◽  
Chloe Joynt

Argininosuccinate lyase (ASL) deficiency is a rare autosomal recessive urea cycle disorder. The severe neonatal-onset form is characterised by hyperammonaemia in the first days of life and manifests with a variety of severe symptoms. However, an index of suspicion for additional or alternative diagnoses must be maintained when the patient’s presentation is out of keeping with expected manifestations and course. We present a case of a neonate with ASL deficiency and concomitant hypotonia, severe respiratory distress, pulmonary hypertension, systemic hypotension and congenital hypothyroidism. The patient was investigated and subsequently diagnosed with brain-lung-thyroid syndrome, caused by a mutation in the NKX2-1 gene.


2020 ◽  
Author(s):  
Leandro R. Soria ◽  
Dany P. Perocheau ◽  
Giulia De Sabbata ◽  
Angela De Angelis ◽  
Gemma Bruno ◽  
...  

ABSTRACTUrea cycle disorders (UCD) are inherited defects in clearance of waste nitrogen with high morbidity and mortality. Novel and more effective therapies for UCD are needed. Studies in mice with constitutive activation of autophagy unraveled Beclin-1 as druggable candidate for therapy of hyperammonemia. Next, we investigated efficacy of cell penetrating autophagy inducing Tat-Beclin-1 (TB-1) peptide for therapy of the two most common UCD, namely ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL) deficiencies. TB-1 reduced urinary orotic acid and hyperammonemia, and improved survival under protein-rich diet in spf-ash mice, a model of OTC deficiency (proximal UCD). In AslNeo/Neo mice, a model of ASL deficiency (distal UCD), TB-1 increased ureagenesis, reduced argininosuccinate, and improved survival. Moreover, it alleviated hepatocellular injury and decreased both cytoplasmic and nuclear glycogen accumulation in AslNeo/Neo mice. In conclusion, Beclin-1-dependent activation of autophagy improved biochemical and clinical phenotypes of proximal and distal defects of the urea cycle.


JCI Insight ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Lindsay C. Burrage ◽  
Simran Madan ◽  
Xiaohui Li ◽  
Saima Ali ◽  
Mahmoud Mohammad ◽  
...  

2020 ◽  
Vol 318 (1) ◽  
pp. F175-F182 ◽  
Author(s):  
Mahmoud A. Mohammad ◽  
Inka C. Didelija ◽  
Xioying Wang ◽  
Barbara Stoll ◽  
Douglas G. Burrin ◽  
...  

Developmental changes in the renal expression and activity of argininosuccinate synthase (ASS1) and argininosuccinate lyase (ASL), enzymes that use citrulline for the production of arginine, have been reported. Thus, the ability of neonates, and especially premature neonates, to produce arginine may be compromised. To determine the utilization of citrulline in vivo, we measured renal expression of ASS1 and ASL and conducted citrulline compartmental and noncompartmental kinetics using [15N]citrulline in pigs of five different ages (from 10 days preterm to 5 wk of age). The tracer was given in substrate amounts to also test the ability of neonatal pigs to use exogenous citrulline. Preterm and term pigs at birth had lower ASS1 and ASL expression than older animals, which was reflected in the longer half-life of citrulline in the neonatal groups. The production and utilization of citrulline by 1-wk-old pigs was greater than in pigs of other ages, including 5-wk-old animals. Plasma citrulline concentration was not able to capture these differences in citrulline production and utilization. In conclusion, the developmental changes in renal ASS1 and ASL gene expression are reflected in the ability of the pigs to use citrulline. However, it seems that there is an excess capacity to use citrulline at all ages, including during prematurity, since the bolus dose of tracer did not result in an increase in endogenous citrulline. Our results support the idea that citrulline supplementation in neonatal, including premature, pigs is a viable option to increase arginine availability.


Sign in / Sign up

Export Citation Format

Share Document